
© Springer International Publishing Switzerland 2015
C. Conati et al. (Eds.): AIED 2015, LNAI 9112, pp. 525–528, 2015.
DOI: 10.1007/978-3-319-19773-9_53

The Beginning of a Beautiful Friendship?
Intelligent Tutoring Systems and MOOCs

Vincent Aleven1(), Jonathan Sewall1, Octav Popescu1, Franceska Xhakaj2,
Dhruv Chand3, Ryan Baker4, Yuan Wang4, George Siemens5,

Carolyn Rosé1,6, and Dragan Gasevic7

1 Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, United States
{aleven,sewall,cprose}@cs.cmu.edu, octav@cmu.edu

2 Computer Science Department, Lafayette College, Easton, United States
xhakajf@gmail.com

3 Department of Mechanical Engineering, National Institute of Technology Karnataka,
Mangaluru, India

dhruvchand@live.com
4 Teacher’s College, Columbia University, New York, United States

ryanshaunbaker@gmail.com, elle.wang@columbia.edu
5 LINK Lab, The University of Texas at Arlington, Arlington, United States

gsiemens@gmail.com
6 Language Technologies Institute, Carnegie Mellon University, Pittsburgh, United States

7 Schools of Education and Informatics, University of Edinburgh, Edinburgh, United Kingdom
dgasevic@acm.org

Abstract. A key challenge in ITS research and development is to support tutoring
at scale, for example by embedding tutors in MOOCs. An obstacle to at-scale dep-
loyment is that ITS architectures tend to be complex, not easily deployed in
browsers without significant server-side processing, and not easily embedded in a
learning management system (LMS). We present a case study in which a widely
used ITS authoring tool suite, CTAT/TutorShop, was modified so that tutors can
be embedded in MOOCs. Specifically, the inner loop (the example-tracing tutor
engine) was moved to the client by reimplementing it in JavaScript, and the tutors
were made compatible with the LTI e-learning standard. The feasibility of this
general approach to ITS/MOOC integration was demonstrated with simple tutors
in an edX MOOC “Data Analytics and Learning.”

1 Introduction

MOOCs and online courses are by now very widespread and popular [7]. At their
best, they succeed at offering open and free opportunities to complete courses offered
by some of the best universities in the world and at creating large-scale social partici-
pation, Although they are perhaps best known for the use of video lectures, they also
support learning by doing, offering either simple activities with automated feedback
(e.g., multiple choice questions to test your understanding) or complex activities with
peer help, peer discussion, and peer grading. Although these solutions have been quite

526 V. Aleven et al.

successful at scale, they have their drawbacks. A single question with feedback on the
final answer is a minimal way of scaffolding an elaborate reasoning process [8][9].
Peer discussion and feedback are not always timely; peers may not know the right
answer or may disagree, and many learners may be reluctant to post questions and
concerns to a large audience [2]. MOOCs sometimes have limited capabilities to sup-
port individual learning [4] or personalizing instruction.

Intelligent tutoring systems (ITSs) address some of these limitations. Their effec-
tiveness in helping students learn has been well-documented [5][9]. They provide
step-by-step guidance during (moderately) complex problem solving. They can track
learners’ skill growth and select problems on an individual basis. They can adaptively
respond to student strategies and errors. On the other hand, MOOCs support learning
in ways that ITSs do not, for example with video lectures, discussions forums, and so
forth. Hence, we propose integrating ITS-style learning-by-doing into MOOCs.

To achieve this integration, we see two main challenges: ITSs tend to be technolo-
gically complex and not always compatible with browser technology, at least without
substantial server-side processing. Also, ITSs are often not interoperable with existing
MOOC platforms or other learning management systems. In the current paper, we
address these challenges. We present a case study in which a widely used set of ITS
authoring tools, the Cognitive Tutor Authoring Tools [1] (CTAT, http://ctat.pact.cs.
cmu.edu) was extended so that tutors built with these tools can run in browsers in a
way that is compatible with e-learning platforms. We demonstrated the technical fea-
sibility of this approach in an edX MOOC during the Fall of 2014.

2 CTAT/TutorShop and Example-Tracing Tutors

CTAT supports the authoring, without programming, of example-tracing tutors, a type
of tutoring system that provides step-by-step guidance in complex problem-solving
activities [1]. Example-tracing tutors have been widely used in ITS research and de-
velopment projects and have been shown to support student learning in a range of
domains. CTAT is integrated with TutorShop, a module that provides course man-
agement and learning content management services for CTAT-built ITSs. .

For the discussion that follows, it is important to explain how key tutoring functio-
nality is separated and distributed in the CTAT/TutorShop architecture. In this archi-
tecture, the tutor interface, the tutor’s inner loop functionality, and its outer loop are
all strictly separate. By the inner loop, VanLehn [9] means the tutor’s within-problem
guidance. In CTAT/TutorShop’s architecture, the tutor engine (which implements the
example-tracing algorithm) takes care of the inner loop. Prior to the changes de-
scribed in this paper, it ran on the server and was implemented in Java. TutorShop
takes care of the outer loop; it personalizes the selection of problems based on a stu-
dent model [3]. This student model is computed in the inner loop and communicated
to the outer loop at the end of each problem, where it is stored between sessions. The
tutor interface is separated from the tutor back-end. This is referred to as the tool-tutor
separation, with a well-specified API [6]. The interface is launched from the Tutor-
Shop at the start of each problem, but after that communicates only with the inner
loop (the example tracer) until the student finishes the problem, when the interface
updates TutorShop with the revised student model and requests the next problem.

 The Beginning of a Beautifu

3 Technical Integr

Given the factored architec
gration involved two key
example-tracing tutor engin
load; we did so by reimple
the TutorShop LTI-compli
(here, edX) could be launc
edX course management f
model and other analytics
(http://www.imsglobal.org/
bility of Ruby packages for

Fig. 1. Over

Figure 1 summarizes the
tool. After the student (1)
page (3) invokes TutorShop
ing HTML with the studen
iframe. Thereafter, whenev
interface (6) passes the act
correctness feedback, possib
the UI (8) displays the feed
problem. At that point, the
model to TutorShop, and T
the next problem (adaptivel

To test the technical inte
CTAT tutors in the edX D
tutors were included in 2 o
Since this was the first atte
the tutor activities were no
cate. Students’ performanc
grades. As a result, only a s

ul Friendship? Intelligent Tutoring Systems and MOOCs

ration and Pilot Test

cture described above, our approach to tutor/MOOC in
technical changes. First, we moved the inner loop (

ne) to the client, to reduce client-server traffic and ser
ementing it in JavaScript. The second change was to m
ant so that tutors embedded in the host MOOC platfo

ched from the TutorShop and communicate with both
facilities and the TutorShop (e.g., for storing the stud
s). We implemented the Leaning Tools Interoperabi
/lti/) tool provider interface in the TutorShop. The ava
 OAuth and LTI greatly simplified our task.

rview of the CTAT/TutorShop/edX integration

e data flow in a MOOC with CTAT/TutorShop as an L
sees a course page and (2) invokes the tutor activity,

p’s tool provider URL; TutorShop (4) replies by downlo
nt interface and the JavaScript tutor engine into the pag
ver the student (5) attempts a step in the problem, the u
tion to the JavaScript tutor engine, which (7) replies w
bly an error feedback message, and student model upda
back, and steps 5-8 repeat until the student has finished
UI (9) sends a performance summary with revised stud

TutorShop (10) updates the LTI score. TutorShop choo
ly, based on the student model) and returns to (4).
egration of CTAT/TutorShop and edX, we tried out sim
Data Analytics and Learning MOOC. Specifically, CT
of the 8 weeks as part of the weekly activities/assignme
empt to incorporate CTAT tutors in MOOC assignme

ot required for students seeking to receive a course cert
ce on these two activities did not influence their fi
small number of learners completed the tutor activities.

527

nte-
(the
rver

make
orm
the

dent
ility
aila-

LTI
the

oad-
ge’s
user
with
ates;

the
dent
oses

mple
TAT
ents

ents,
tifi-

final

528 V. Aleven et al.

4 Discussion and Conclusion

Our pilot study demonstrates the feasibility of the MOOC/ITS integration between
edX and CTAT/TutorShop. Although the pilot study involved a very simple tutor, the
integration makes it possible to embed any CTAT tutor in an LTI-compliant MOOC
or online course platform. To the best of our knowledge, it was the first technical
demonstration of embedding an ITS in a MOOC, an important first step towards tu-
toring at scale. Testing with very large numbers of participants remains for future
work. This technology integration may benefit other ITSs or ITS authoring tools, as
some of the same steps might apply. Key is the separation of tutor interface, inner
loop, and outer loop, so interface and inner loop can run on the client, while the outer
loop is its own server-based web application. MOOC/ITS integration is attractive
from a practical and from a research perspective. Tutors could enhance MOOCs by
supporting some forms of learning by doing with detailed feedback and adaptive
problem selection. The integration may enable MOOC researchers to address research
questions about how learning by doing might best supplement other forms of learning
in MOOCs and may open up opportunities for ITS researchers to do research at scale.

Acknowledgments. The work reported in this paper was supported by grants DRL-1418378
and SBE-0836012 and funding from Google.

References

1. Aleven, V., McLaren, B.M., Sewall, J., Koedinger, K.R.: A new paradigm for intelligent
tutoring systems: Example-Tracing tutors. International Journal of Artificial Intelligence in
Education 19, 105–154 (2009)

2. Baxter, J.A., Haycock, J.: Roles and student identities in online large course forums:
Implications for practice. The International Review of Research in Open and Distance
Learning 15 (2014)

3. Corbett, A., McLaughlin, M., Scarpinatto, K.C.: Modeling student knowledge: Cognitive
tutors in high school and college. User Modeling and User-Adapted Interaction 10, 81–108
(2000)

4. Mackness, J., Mak, S., Williams, R.: The ideals and reality of participating in a MOOC. In:
Dirckinck-Holmfeld, L., Hodgson, V., Jones, C., De Laat, M., McConnell, D., Ryberg, T.
(eds.) Proceedings of the 7th International Conference on Networked Learning 2010,
pp. 266–275. University of Lancaster, Lancaster (2010)

5. Pane J.F., Griffin B.A., McCaffrey D.F., Karam R.: Effectiveness of cognitive tutor algebra
I at scale. Educational Evaluation and Policy Analysis :0162373713507480 (2013)

6. Ritter, S., Koedinger, K.R.: An architecture for plug-in tutor agents. International Journal of
Artificial Intelligence in Education 7, 315–347 (1996)

7. Siemens, G.: Massive Open Online Courses: Innovation in education? Open Educational
Resources: Innovation, Research and Practice 5 (2013)

8. VanLehn, K.: The relative effectiveness of human tutoring, intelligent tutoring systems, and
other tutoring systems. Educational Psychologist 46, 197–221 (2011)

9. VanLehn, K.: The behavior of tutoring systems. International Journal of Artificial
Intelligence in Education 16, 227–265 (2006)

	The Beginning of a Beautiful Friendship? Intelligent Tutoring Systems and MOOCs
	1 Introduction
	2 CTAT/TutorShop and Example-Tracing Tutors
	3 Technical Integr ration and Pilot Test
	4 Discussion and Conclusion
	References

