SOFTWARE: PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2016; 46:867-889
Published online 29 May 2015 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/spe.2334

Empirical study of the dynamic behavior of JavaScript objects

Shiyi Weil*', Franceska Xhakaj> and Barbara G. Ryder!

! Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
2Department of Computer Science, Lafayette College, Easton, PA, USA

SUMMARY

Despite the popularity of JavaScript for client-side web applications, there is a lack of effective software tools
supporting JavaScript development and testing. The dynamic characteristics of JavaScript pose software
engineering challenges such as program understanding and security. One important feature of JavaScript
is that its objects support flexible mechanisms such as property changes at runtime and prototype-based
inheritance, making it difficult to reason about object behavior. We have performed an empirical study on
real JavaScript applications to understand the dynamic behavior of JavaScript objects. We present metrics
to measure behavior of JavaScript objects during execution (e.g., operations associated with an object,
object size, and property type changes). We also investigated the behavioral patterns of observed objects to
understand the coding or user interaction practices in JavaScript software. Copyright © 2015 John Wiley &
Sons, Ltd.

Received 7 April 2014; Revised 6 May 2015; Accepted 8 May 2015

KEY WORDS: JavaScript; study of websites; object behavioral metrics and patterns

1. INTRODUCTION

JavaScript is a dynamic programming language known for its flexibility of programming, supporting
mechanisms for runtime code loading and generation. JavaScript is the most widely used pro-
gramming language for developing interactive, client-side web applications. Based on recent usage
statistics, 89% of all website software uses JavaScript [1], and there is a trend that JavaScript is
becoming the most popular programming language, overall [2]. In addition, developers commonly
use large libraries and frameworks (e.g., jQuery) to build JavaScript applications.

Unlike other popular object-oriented languages (e.g, Java, C, and C#), JavaScript does not have
classes; instead, it supports prototype-based inheritance [3, 4]. We will discuss prototype-based
inheritance in Sections 2.1 and 4.3. Furthermore, JavaScript object properties may change at any
program point (e.g., property deletions). These features make it difficult to reason about the behav-
ior of JavaScript objects. Therefore, these features pose several software engineering challenges
for JavaScript applications: (i) Powerful integrated development environments (IDEs) enable more
effective software development for programming languages such as Java and C#; however, there is
a lack of IDE support for developing or understanding JavaScript programs. Because the properties
and inheritance of JavaScript objects may change during execution, code completion suggestions
are too imprecise to be useful [5]. (ii) Because JavaScript websites are exposed to web attackers,
it is important to have software tools that can detect security vulnerabilities. Detecting possible
security exploits becomes challenging when the approximation of program behavior is inaccu-
rate. (iii) Optimization of JavaScript programs is difficult because of the dynamic nature of objects
(e.g., dynamic typing).

*Correspondence to: Shiyi Wei, Department of Computer Science, Virginia Tech, Blacksburg, VA, USA.
TE-mail: wei@cs.vt.edu

Copyright © 2015 John Wiley & Sons, Ltd.

868 S. WEL F. XHAKAJ AND B. G. RYDER

Researchers have presented several approaches for handling such challenges in program under-
standing [5-7], security [8—10], and optimization [11, 12]. This work usually makes assumptions
about the behavior of JavaScript programs, focusing on a subset of the language characteristics.
We believe that an in-depth investigation of JavaScript applications can help researchers better
understand program behavior and be more informed in choosing their techniques when designing
JavaScript tools. Richards et al. presented an innovative study on the dynamic behavior of JavaScript
applications [13]. The authors evaluated several dynamic metrics (e.g., call site dynamism, function
variadicity, and uses of eval) of JavaScript websites (Section 2.2).

In this paper, we conduct an empirical study focusing on understanding the runtime behavior of
JavaScript objects. Because of the usage of delegation in prototype-based programming, the prop-
erties and inheritance of a JavaScript object may change at runtime. This design feature makes it
difficult to predict JavaScript object behavior and requires an in-depth study to better understand
the runtime behavior of JavaScript objects in websites. Our study was performed on the same set
of dynamic traces of JavaScript websites as in Richards et al. [13] to augment the existing obser-
vations with object behavior characteristics for these executions. Each trace consists of information
from an execution such as executed code and instructions (see details in Section 3.2). Our study
provides the first in-depth investigation of JavaScript object behavior. We report the number and
kind of operations associated with objects, type changes of object properties, dynamic character-
istics of prototype-based inheritance, and so on. We also summarize the behavioral patterns of
certain objects (i.e., user objects) suggesting common practices that pose difficulties for program
understanding. We designed specific metrics for measuring JavaScript objects and their behav-
ior, aggregating the results via offline analyses. We relate our findings to assumptions of existing
approaches for analyzing JavaScript applications.

The major contributions of this study are as follows:

e We designed metrics for measuring JavaScript objects and empirically collected and summa-
rized results on JavaScript website traces. We measured object features including object size,
dynamic typing, and prototyping. The most interesting findings include: (i) the local size (i.e.,
number of local properties) of a user object changes significantly at different program points;
(ii) singleton constructors (i.e., a constructor function that only creates one observed object
instance) exist widely in JavaScript applications; and (iii) prototype-based inheritance is not
often implemented for code reuse.

e We investigated behavioral patterns of user objects and linked them to coding or user inter-
action practices. We studied patterns of operation occurrence sequences per object/property
and patterns of property-type change. We reported several interesting JavaScript object behav-
iors including the following: (i) cases where read operations of the same property trigger
different lookup mechanisms (local or inherited property) at different program points, making
it difficult to understand JavaScript property accesses; (ii) cases where JavaScript program-
mers seem to intentionally use a delete operation to ensure that a certain property does
not exist at a program point, not knowing if the property existed before; and (iii) cases
where a property demonstrates different behaviors at different stages of its lifetime as its
type changes.

Overview. The rest of the paper is organized as follows. Section 2 provides the background on
JavaScript objects and then discusses related work. Section 3 describes the design of our empirical
study, the experimental setup, and threats to validity. Section 4 presents the summarized metrics,
and Section 5 discusses the behavioral patterns of JavaScript objects. Section 6 offers conclusions
and future work.

2. BACKGROUND AND RELATED WORK

In this section, we introduce the JavaScript dynamic characteristics that may affect object behavior.
We also present work related to our empirical study.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:867-889
DOI: 10.1002/spe

EMPIRICAL STUDY OF THE DYNAMIC BEHAVIOR OF JAVASCRIPT OBJECTS 869

2.1. Dynamic behavior of JavaScript objects

JavaScript is a dynamic object-oriented programming language. Its dynamic characteristics render
the runtime behavior of JavaScript applications unpredictable. In addition to the reflective mecha-
nisms that enable code generation and loading during execution, there are several program features
in JavaScript that make it difficult to accurately model object behavior.

JavaScript is a dynamically typed language. A JavaScript variable may be bound to different
types at different program points. Thus, static type checking, a technique widely applied in soft-
ware optimization tools for programming languages such as Java and C, may be inaccurate. In this
study, we demonstrated the frequency and patterns of type changes in JavaScript object properties
in popular websites.

Object properties can be added, updated, or deleted at runtime. The possible behavior of
a JavaScript object is defined by its properties. In JavaScript, an object property can be added or
updated via an indirect assignment statement (e.g., x.p = y); it can also be deleted via a delete
statement (e.g., delete x.p). This means that a JavaScript object may exhibit different behav-
iors at different times during execution. We have studied property changes and their effect on
object behavior.

JavaScript supports prototype-based inheritance. Instead of class-based inheritance, a
JavaScript object inherits properties from a chain of prototype objects that is defined during exe-
cution. Lacking the notion of class, it is difficult to summarize the type of a JavaScript object at a
particular program point. The inherited properties of JavaScript objects cannot be predicted accu-
rately because they are decided at runtime. In this study, we investigated the dynamic behavior of
JavaScript inheritance.

Objects created by native languages. Many JavaScript applications executed with native code
(e.g., C and C++) are unavailable to JavaScript tools. In this study, we report the behavior of the
objects created by these native languages.

2.2. Related work

We present the works that are the most relevant to our research: (i) empirical studies of JavaScript
applications; (ii) related analyses of the dynamic behavior of JavaScript objects; and (iii) dynamic
metrics for other programming languages.

Dynamic studies of JavaScript applications. JavaScript features, which are used in the pro-
grams, introduce dynamic behavior that has been studied in previous research. Richards et al.
performed experiments on JavaScript programs downloaded from popular websites running in the
browser to study several aspects of dynamic behavior [13]. Popular websites were studied result-
ing in several conclusive observations: (i) the prototype hierarchy often changes within libraries;
(il) properties are not just added at object initialization; and (iii) property deletions are common
in some websites. Recall that in our study, we reused these benchmarks (i.e., traces) and modified
the analysis infrastructure in Richards et al. [13].¥ We focused on more detailed observations about
individual JavaScript object behavioral patterns. Richards et al. also presented an evaluation of the
runtime code generation mechanisms in JavaScript, focusing on the eval construct [14]. The authors
analyzed the details of the uses of eval and demonstrated several cases. We focused on other impor-
tant programming language features (e.g., object inheritance through prototyping) that affect the
dynamic behavior of JavaScript applications.

Ratanaworabhan et al. presented a study comparing the behavior of JavaScript benchmarks (e.g.,
SunSpider and V8) with real web applications [15]. The authors evaluated differences in behavior
between the benchmarks and websites, concluding that the benchmarks were not representative of
the behavior of real JavaScript applications. This study motivated us to conduct our experiments on
JavaScript code extracted from websites.

Martinsen and Grahn performed a study on social networking web applications to understand the
different behaviors between social networks and established benchmarks [16]. The authors focused

The traces and original tools [13] are available at https://www.cs.purdue.edu/sss/projects/dynjs/.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:867-889
DOI: 10.1002/spe

870 S. WEL F. XHAKAJ AND B. G. RYDER

on studying JavaScript function behavior. For example, they found a high variance in the execution
times of individual functions in social networking applications and that anonymous functions were
used frequently. The behavior of social networking applications was revealed to be very different
from the benchmarks. In our study, we analyzed a larger set of web applications and focused on the
behavior of JavaScript objects, not functions.

Ocariza Jr. et al. studied JavaScript errors in web applications [17, 18]. The authors categorized
the observed errors at runtime and summarized their correlations to the characteristics of JavaScript
websites [17]. For example, they observed that there was a medium correlation between the number
of null exceptions and the average number of property deletions in the JavaScript code. In Ocariza
Jr. et al. 18], the authors focused on the JavaScript bugs caused by the Document Object Model
(DOM). We report more than the summarized results. In the future, we plan to study the correlation
between JavaScript errors and object behavioral patterns.

Yue and Wang performed a dynamic study focusing on non-secure JavaScript practices on the web
[19, 20]. The authors used an instrumented version of Firefox to collect trace files and evaluated non-
secure practices (e.g., eval) by performing offline analyses. We focused on the nature of JavaScript
objects and their behavior, but not specifically on security.

Analyses of the dynamic behavior of JavaScript objects. The goal of our study is to better
understand JavaScript object behavior. We also discuss the effectiveness of existing or possible pro-
gram analysis techniques based on empirical observations in Section 4. There are several analyses
that apply specialized approaches for JavaScript objects. Wei and Ryder presented a context-
sensitive points-to analysis to keep track of the changes of object properties [21]. This analysis used
an approximated type of the receiver object as the calling context, and object properties were cal-
culated using a partially flow-sensitive analysis. The algorithm was implemented in the JavaScript
Blended Analysis Framework [10] and scaled to real websites. Our study results demonstrate that
changes of object properties happen frequently in JavaScript applications; an analysis that models
these changes will likely produce more accurate solutions.

Jensen et al. presented a static analysis that can precisely model JavaScript objects and their
prototypes [22]. Their flow-sensitive analysis handled several features of JavaScript objects (e.g.,
prototype-based inheritance and property changes at runtime); however, it could not analyze real
websites efficiently. Our study of dynamic characteristics of JavaScript objects in website code may
help this analysis improve its performance by specializing the analysis for features appearing often
in real code.

Guarnieri et al. presented a static taint analysis finding security vulnerabilities in JavaScript
websites [9]. The analysis focused on addressing dynamic features of JavaScript including object
creations and accesses through constructed property names. Other features (e.g., inheritance and
runtime property changes) were modeled conservatively. Our study suggests the latter features
should be handled more precisely to produce more accurate analysis solutions.

Madsen et al. presented a static analysis of JavaScript applications handling some of the chal-
lenges posed by native code [6]. The authors designed a use analysis combined with a pointer
analysis to recover information about the structure of objects and to infer the missing inter-
procedural flow introduced by the unavailable code. Our study shows that objects created by native
code frequently occur in JavaScript websites, and therefore, the analysis [6] may be quite useful.

Several JavaScript static type systems (e.g., [23, 24]) were introduced despite the difficulty of
building an accurate model (Section 2.1). However, there was no empirical evidence to show that
these type systems considering JavaScript features (e.g., property changes) were scalable to real
websites. The observations made in our paper may be useful for making reasonable approximations
in the representation of JavaScript objects to increase scalability in these type systems.

Schifer et al. presented a dynamic analysis to identify determinate (i.e., always having the same
value at a given program point) variables and expressions in JavaScript programs [25]. The approach
soundly inferred the determinacy facts that hold for any execution. The authors argued the results
might be helpful to improve static pointer analysis. Similarly, Andreasen and Mgller presented a
static approach to infer and exploit determinacy information [26]. Our study shows that although
object property changes happen frequently in JavaScript websites, there are many properties whose

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:867-889
DOI: 10.1002/spe

EMPIRICAL STUDY OF THE DYNAMIC BEHAVIOR OF JAVASCRIPT OBJECTS 871

value never changes in the observed executions, indicating possible determinacy. Thus, determi-
nacy analyses ([25, 26]) can be used on real JavaScript applications to establish its effectiveness
in practice.

Dynamic metrics for other programming languages. Dufour e? al. presented a study on Java
programs applying dynamic metrics [27]. The authors developed several general metrics that also
can be used for studying JavaScript applications. In our work, we adapted these ideas for measuring
polymorphism and object size in the context of JavaScript objects.

Holkner and Harland conducted experiments on Python programs studying their dynamic behav-
ior [28]. The authors focused on the instructions such as adds and deletes. Furr ef al. presented a
dynamic analysis and transformation of Ruby programs [29]. The runtime instrumentation gathered
profiles of dynamic feature usage and these features were then replaced with statically analyz-
able alternatives. The usage reported shows that dynamic features are pervasive throughout the
Ruby benchmark suite, especially the eval construct [29]. Python, Ruby, and JavaScript are all
dynamic programming languages sharing certain language features. The results of our study may be
compared with these results ([28, 29]) to illustrate similarities and differences among these
programming languages.

Hills et al. presented an empirical study on PHP feature usage [30]. The authors presented sev-
eral dynamic metrics similar to those in Richards ef al. [13] and provided guidance for developing
program analysis tools for PHP. In our study, we use the empirical results to better understand the
behavior of JavaScript applications.

3. EXPERIMENTAL DESIGN

In this section, we discuss the choices we made when we conducted the study and the setup of the
experiments. We also present the threats to validity of our study.

3.1. Design decisions

Benchmarks and tools. JavaScript is the most popular programming language used for client-side
web applications. We chose to conduct the experiments on websites implemented in JavaScript to
reflect the behavior of real JavaScript applications. In our study, we used the benchmarks collected
by Richards et al. [13]. The benchmarks consist of 114 dynamic traces extracted from 70 popular
websites based on the Alexa (http://www.alexa.com/) list. In the benchmarks, most websites were
observed in one dynamic trace, while some top websites were explored by several traces (e.g., sites
of google.com such as gmail and google maps were presented in 12 separate traces). These traces
were collected by an instrumented Safari browser, TracingSafari [13], which is capable of recording
the dynamically loaded source code and other operations (e.g., writes, deletes, and calls). Our exper-
iments were implemented as an augmented version of an offline analysis tool, TraceAnalyzer [13].
In this paper, we focus on analyzing the operations that affect the behavior of JavaScript objects
(e.g., property writes and deletes). More details of the experiments are discussed in Section 3.2.

Object categories. During the execution of JavaScript programs, there are different kinds of
objects® being allocated. We categorize these objects into the following kinds: (i) basic datatypes
(i.e., the built-in objects in JavaScript including Date, Array, String, Regular Expressions, etc.); (ii)
anonymous objects (i.e., the objects created via a pair of braces {... }); (iii) DOM objects (i.e., the
HyperText Markup Language (HTML) document objects); (iv) functions (i.e., the objects created by
the Function constructor); (v) native objects (i.e., the objects created through execution of unavail-
able native code); and (vi) user objects (i.e., the objects created via the new constructor expression
either in the application code or in the JavaScript libraries). We defined these object categories based
on (i) the dynamic traces and reports from Richards et al. [13] and (ii) our observations of and
experience with JavaScript programs and objects.

$Tn our discussion, we use the term object to refer to an observed object instance during execution and use the term
property to refer to an observed object property instance during execution.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:867-889
DOI: 10.1002/spe

872 S. WEL F. XHAKAJ AND B. G. RYDER

Native User
objects objects
0.6% 5.9%

User
objects
29.0%
DOM
objects
16.4% Native Anonymous
objects objects
7.8% 36.5%
Anonymous
objects
11.3%
objects
4.4%
(a) Percentage of object instances in (b) Percentage of operations associ-
each object category. ated with each object category.
Figure 1. Object categories and their related operations.
Table I. The relationship between instructions and operation kinds.

Instruction Operation kind Preconditions
property write add The property does not exist locally or on the prototype chain.

override The property does not exist locally but exists on the prototype chain.

update The property exists locally.
property read read-inherit The property does not exist locally.

read-local The property exists locally.
property delete delete
constructor return constructed This operation only occurs on user objects.

Figure 1(a) shows the distribution of the object instances in these categories over all traces. More
than 50% of the instances are basic dataypes among which arrays are the most frequently created.
The number of user object instances are relatively small (5.9%), and less than 1% of the instances
are native objects. Figure 1(b) shows the distribution of the number of operations! for each object
category over all traces. Most operations occurred on anonymous objects (36.5%) and user objects
(29.0%), while only 4.4% of the operations occurred on DOM objects. Comparing the results in
Figure 1(a) and (b), we observe that native objects, user-defined objects, and anonymous objects
were more active than the other object categories (i.e., on average, more operations were associated
with each object in these categories.). On average over all the objects of each category in the traces, a
native object was associated with 73 operations and a user object was associated with 26 operations;
however, either a basic datatype or a DOM object was associated on average with only one operation.
Because our goal was to investigate the dynamic behavior of JavaScript objects, we chose the more
active object categories (i.e., user objects and native objects) as the focus of this study."”

Methodology. Previous work [13, 27] defined and discussed the requirements and methodology
for designing a dynamic study. This paper adapts some metrics (e.g., object size) from Dufour et al.

1In our study, we only consider the operation kinds in Table I. We do not analyze other operation kinds (e.g., function call)
recorded by TracingSafari. In our discussion, we use the term operation to refer to one of the operation kinds in Table I.
1Ocariza Jr. et al. [18] reported that many JavaScript bugs were related to DOM objects. Because DOM objects were
associated with a relatively small number of operations, it may be possible to investigate the cause of DOM object related
JavaScript bugs easily in future work.
“"Despite the fact that anonymous objects are relatively active as shown in Figure 1, the results in Figure 3 suggest that
anonymous objects are not actively using inheritance and that they experience fewer object property changes. Therefore,
we chose not to perform an in-depth study on anonymous objects.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:867-889
DOI: 10.1002/spe

EMPIRICAL STUDY OF THE DYNAMIC BEHAVIOR OF JAVASCRIPT OBJECTS 873

[27] and is complementary to the study of Richards et al. [13], focusing on dynamic object behavior.
In Section 4, we present our metrics, illustrating the characteristics of the benchmark applica-
tions. In Section 5, we discuss the JavaScript object behavioral patterns found via case studies. The
metrics present the summarized behavior, and the specialized cases more intuitively demonstrate
representative conditions.

3.2. Experimental setup

A trace is a compressed file containing a source code and a sequence of instructions that are recorded
at runtime [13]. In our study, we focused on the following instructions that are related to JavaScript
object behavior: (i) property writes; (ii) property reads; (iii) property deletes; and (iv) constructor
returns. In the experiments, we analyzed the instructions in sequence and assigned a unique oper-
ation kind for each instruction. Table I shows the relation of instructions to operation kinds. Note
that the same instruction may result in different operation kinds under different circumstances. In
JavaScript, a property write instruction can only change a local property value (i.e., write to the prop-
erty of the object itself, not to property of its prototype object). In our analysis, a property write may
result in one of the three operation kinds (i.e., add, override, and update) for a better understanding
of its effect on object properties and inheritance. The property lookup mechanism in JavaScript, on
the other hand, may use the prototype chain to read an inherited property; hence, we assign one of
the two operation kinds (i.e., read-inherit and read-local) to a property read instruction. We use the
constructed operation for a user-defined object to distinguish its construction stage from the rest of
its object lifetime.

We modified TraceAnalyzer to produce the operation kinds in Table I and implemented an
object category filter to focus on the object categories that best demonstrated dynamic behavior
(Section 3.1). Our implementation produced both aggregated results and detailed information for
individual objects. Figure 2 shows an example of the history information (i.e., sequence of opera-
tions) associated with an object. For each operation, we output the operation kind, property name,
property type, and other information (e.g., the property access chain for a read-inherit operation).
We used such information to study object behavioral patterns (Section 5). The experimental results
were obtained in a 2.66 GHz Intel Core 2 Duo MacBook Pro with 4 GB memory running the Mac
OS X 10.6.8 operating system.

3.3. Threats to validity

There are several aspects of our empirical study which might threaten the validity of our conclusions:
(i) Although the websites we used were listed at Alexa as most popular 5 years ago, we cannot know
how representative the input is of current website usage. In addition, websites today may exhibit

Object Information:
609. Object ID: 15796

Category: user object

Operations: 24

Prototype: 8054

History

1. OpKind: add Property: fn Type: 9697 (function) OpID: 67849
2. OpKind: add Property: obj Type: 15261 (unknown) OpID: 67852
3. OpKind: add Property: overrideContext

Type: 15104 (constructed by 9807 (function)) OpID: 67863
4. OpKind: constructed
21. OpKind: read-inherit Property: contains Type: 8057 (function)

Chain: 15796-8054 OpID: 329322
22. OpKind: read-local Property: fn Type: 9697 (function) OpID: 329323
23. OpKind: delete Property: fn OpID: 329327
24. OpKind: delete Property: obj OpID: 329328

Figure 2. Sample history information of an individual object from yahoo.com.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:867-889
DOI: 10.1002/spe

874 S. WEL F. XHAKAJ AND B. G. RYDER

different behaviors from what we observed. We plan to conduct a study on web application evolution
in future work. (ii) The traces may not cover all possible behaviors of the websites; thus, there may
be important behavior not explored by the dynamic trace collection. (iii) The traces were collected
by executing websites under one browser (i.e., Safari). JavaScript code specific to other browsers
might not be executed so that it was not collected and analyzed in our study.

4. METRICS

In this section, we present the metrics for summarizing the characteristics of all object categories,
user objects, prototype-based inheritance, and native objects.

4.1. General metrics of JavaScript objects

We first discuss the metrics gathered for all object categories.

Operation kind distribution. The behavior of an object is defined by its associated operations.
An object is more dynamic when its properties change (e.g., override, add, or delete) frequently.
The percentage of read-inherit operations suggests the importance of precisely knowing the proto-
typing mechanism. Figure 3 shows the operation kind distribution of objects in all categories over
all traces. Figure 3(a) presents the distribution of read (i.e., read-local and read-inherit) versus write
and delete (i.e., add, update, override, and delete) operations. For each object category, except for
DOM objects, read operations comprised at least 75% of all operations, indicating a relatively small
fraction of operations may possibly change properties. In contrast, DOM objects were associated
with many write or delete operations (about 45%), because interactive JavaScript webpages tend to
make frequent changes to the DOM for updated content such as forms.

Figure 3(b) and (c) presents additional details on the information in Figure 3(a). Figure 3(b)
shows that read-local operations dominated the read operations for most object categories. The
DOM objects never experienced a read-inherit operation (i.e., use of a prototype chain to read an
object) because HTML nodes (e.g., elements and attributes) can be directly accessed (i.e., read-
local). Similarly, the anonymous objects also had very few read-inherit operations (278 out of 3.3 x
107 operations). On the other hand, more than 30% read operations of user objects were read-inherit
operations, suggesting user objects actively use their prototype chains to lookup properties.

Figure 3(c) illustrates the distribution among write and delete operations. delete operations
occurred in all object categories despite their relative infrequency. delete operations comprised 6%
of the write and delete operations on basic datatypes, with many instances on array datatypes.
User objects also experienced relatively many delete operations (i.e., 3% of all write and delete
operations), which means properties of user objects are sometimes removed at some point during
execution. Another infrequently observed write operation was override. Recall that we count a prop-
erty write instruction as override only when the property does not exist locally but exists on the
prototype chain. Less than 0.1% of the write and delete operations of basic dataypes, anonymous
objects, DOM objects, and native objects were override operations. Even so, override operations
occurred more often on functions and user objects; specifically, 10% and 14% of write and delete
operations of functions and user objects were override operations, respectively. add and update
operations were much more frequently observed, with different distributions for each object cate-
gory. Native object was the only object category that contained more update operations than add
operations. The code that initialized native objects was not observed by TracingSafari because it
was not written in JavaScript. Intuitively, the initialization stage of an object consists mostly of
add operations; this suggests why there were fewer add operations recorded for native objects. For
other object categories, at least 60% of write and delete operations were add operations, and at
least 20% of write and delete operations were update operations. To sum up, based on the operation
kind distribution in Figure 3, user objects exhibit the most dynamic characteristics (i.e, read instruc-
tions incur many prototype chain lookups and all the four property changing operation kinds are
frequently observed). We will provide more detailed discussion on property changes of user objects
in Section 4.2.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:867-889
DOI: 10.1002/spe

EMPIRICAL STUDY OF THE DYNAMIC BEHAVIOR OF JAVASCRIPT OBJECTS 875

Hread ®write and delete

User objects

Native objects
Functions

DOM objects
Anonymous objects

Basic datatypes

0% 20% 40% 60% 80% 100%

(a) Read vs. write and delete operation distribution.

M read-local M read-inherit

User objects

Native objects
Functions

DOM objects
Anonymous objects

Basic datatypes

0% 20% 40% 60% 80% 100%

(b) read-local and read-inherit operation distribution.
BMadd Mupdate Moverride Mdelete

User objects

Native objects
Functions

DOM objects
Anonymous objects

Basic datatypes

0% 20% 40% 60% 80% 100%

(c) Write and delete operation distribution.

Figure 3. Operation kind distribution for all object categories. DOM, Document Object Model.

Discussion. The add, override, update, and delete operations of a JavaScript object may change its
behavior at runtime. For a static program analysis to better model JavaScript objects, it is important
to propagate property changes precisely via flow sensitivity (i.e., following the execution order of
statements in a program). However, a fully flow-sensitive analysis may be too costly to be practi-
cal for analyzing large JavaScript programs [22]. Figure 3(a) shows that the majority of JavaScript
object operations are property reads, which do not change object behavior. Thus, it is possible
to do a partially flow-sensitive analysis to enable strong updates at statements that may change
object properties, a small fraction of all statements in JavaScript web applications. The data sug-
gest that this will result in a scalable analysis. Such a partially flow-sensitive analysis was presented
recently [21].

Number of operations. Figure 4 shows a distribution of the number of operations experienced
by each object having at least one operation in the traces. Most of the objects had a relatively small
number of operations as 25% of the objects were associated with one to two operations, and 75%
of the objects had no more than eight operations. However, there still were many objects associated
with a relatively large number of operations (i.e., 1.5% of the total 70,723 objects were associated
with at least 100 operations). The two extreme cases had more than 1 x 10® operations. Despite
differences between websites in the extreme numbers of operations associated with an object, all
the websites contained relatively few objects with large numbers of operations. We will compare
Figure 4 with the same metric applied only to user objects in Figure 6 in Section 4.2.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:867-889
DOI: 10.1002/spe

876 S. WEL F. XHAKAJ AND B. G. RYDER

» 1000000
0

S

& 100000
v}

o

*6,-\

22 10000
°3

= e

SE 1000
=

2E

O ©

£8 100
o

ks

o} 10
Qo

€

=)

P4

IWIMﬁ b Jm”m L1l

1 397 793 1191 1614 2075 2603 3311 4220 5523 7563 12054 25071
Number of operations

1

Figure 4. Number of operations distribution for all objects.

Object size (local) at last operation

75 100 125 150 175 200
Object size (local) at constructed operation

Figure 5. Local sizes of user objects at their constructed and last operations.

4.2. User objects

We now focus on studying the characteristics of the user objects.

Object size. Recall that the behavior of a JavaScript object is decided by its associated properties.
We define the size of a JavaScript object as its number of accessible properties (including local and
inherited properties) at a program point during execution. Because the property list of a JavaScript
object is not fixed at runtime, object size may change. We calculate JavaScript user object sizes at
two crucial stages in object lifetime: at its constructed operation and its last observed operation (i.e.,
an approximation of the end of object lifetime). On average over all the user objects, the object size
was 28 at the constructed operation. Figure 5 shows the local sizes of user objects (i.e., counting
only local properties) at their constructed and last operations. There were many user objects whose
local sizes were the same at both operations in their lifetime (i.e., the points on the x = Yy line).
However, we observed that the local sizes of many user objects grew significantly by the end of their
lifetime compared with local sizes at their constructed operations. This result gives evidence that
the local size of a JavaScript user object is usually not consistent at different stages of its lifetime
and in most cases increases. We plan to investigate object property changes throughout its lifetime
in future work.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:867-889
DOI: 10.1002/spe

EMPIRICAL STUDY OF THE DYNAMIC BEHAVIOR OF JAVASCRIPT OBJECTS 877

Discussion. Static program analysis often identifies objects by their creation site (i.e., all objects
created by the same statement are represented by the same abstract object) [31]. The precision of
analysis results is dependent on the object representation choice. Based on the fact that a JavaScript
constructor may be polymorphic [13] and the object size changes over its lifetime, the creation site
alone may not be representative of a set of JavaScript objects. More accurate object representations
(e.g., arepresentation that identifies objects by their creation site as well as the local properties [21])
are needed for better analysis of JavaScript objects.

Number of operations. Figure 6 shows the distribution of the number of operations experienced
by each user object with at least one operation in the traces. We observed that user objects usu-
ally had more operations than objects in other categories. Specifically, 25% of the user objects were
associated with fewer than six operations, while 25% of the objects in the other categories experi-
enced only one operation. Furthermore, 75% of the user objects had no more than 13 operations,
while 75% of the objects in the other categories experienced at most six operations. We also found
that user objects were most likely to be associated with at least 100 operations (i.e., 1.9% of user
objects were associated with at least 100 operations, and only 0.2% of the objects in the other cat-
egories were associated with at least 100 operations). This result supports our previous observation
that user objects behave more actively than other object categories.

Property type changes. Recall that JavaScript allows an object property to be changed at any
program point (Section 2.1); moreover, the type of an object property may be changed via property
write instructions. If the type of a property is altered, the behavior of the object will very likely

1000000

100000
®
S
=2 10000 B
o o
[
2o
S £ 1000
B E
5 ® “
oD bl

3 100
g_
z
10 [- ad

1 257 513 773 1064 1430 1829 2352 3181 4574 7907 21442
Number of operations

Figure 6. Number of operations distribution for user objects.

100000

10000 -
1000
100
10
1 T T T
1 2

[4, 10] [11, 30] >30
Number of type changes

Number of properties in user objects
(logarithmic scale)

Figure 7. Number of type changes distribution for user object properties.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:867-889
DOI: 10.1002/spe

878 S. WEL F. XHAKAJ AND B. G. RYDER

be changed as well. In Figure 7, we show the distribution of the number of type changes for all
properties with at least two types. We define the following as different property types: (i) every
JavaScript basic datatype; (ii) every constructor of user objects; and (iii) every instance of the rest
of the object categories in Figure 1. For example, if an update operation results in a change in value
of reference property o.p from user object 01 to user object 0,, where 0; and o0, are different object
instances created by different constructors, we calculate that o.p may have two different types at
different program points. We used the constructor of a user object to approximate its type because
this was less costly to check than the actual type equivalence. In JavaScript, property changes from
one object instance to another can result in a very different behavior. Interesting cases and patterns
of property type changes are presented in Section 5. Over all the traces, 99% of the properties in the
user objects did not change types, suggesting most properties were implemented with fixed types.
Nevertheless, there were many properties (i.e., 64,721 of the properties in user objects) whose type
changes, and some of them changed surprisingly many times. As shown in Figure 7, more than
50,000 properties have two different types (i.e., change type once) during the execution. Almost
3000 properties underwent more than 10 changes in their lifetime, and one of them changed more
than 10,000 times (i.e., a property named _next from me.com). The results suggest that the developer
may be using these properties as temporaries for implementing different functionalities at different
program points.

It is possible that a large amount of property type changes do not result in as many types of the
property. For example, a property that changes consistently between String and Boolean has many
property type changes but only two types. Nevertheless, manual inspection of our data show that in
most cases, a property type change introduces a new type for the property.

Discussion. Most properties of user objects never change. This result is consistent with the
assumption made by Schifer et al. [25], suggesting that these techniques (i.e., determinacy analyses
[25, 26]) are promising to use to optimize most properties in JavaScript programs. Nevertheless, it
was reported by Sridharan et al. [32] that some property accesses (i.e., both read and write) render
static analysis for JavaScript inaccurate and unscalable on real applications. These authors observed
that many property accesses are correlated (i.e., a dynamic property r and a property write w are
correlated if w writes the value read at r, and both w and » must refer to the same property name).
Specialized static analysis techniques (e.g., program transformation and context-sensitive analysis
[32]) can be applied to the property accesses that exhibit correlations, especially for the properties
that are frequently accessed shown in Figure 7, to obtain better precision and scalability.

Object instances versus constructors. Our study is a dynamic analysis that reflects the behav-
ior of JavaScript objects in the observed executions. User objects are created by calling constructor
functions. We present the relationship between the created user objects and the constructors from
facebook.com, google.com, and yahoo.com traces in Figure 8. For each of the three websites, we
show the number of singleton constructors, the number of non-singleton constructors (i.e., con-
structors that created more than one observed instance), and the number of user object instances,
respectively. Most constructors (on average 86% over the three websites) created only one object
instance, ranging from 63% (facebook.com) to 90% (google.com). However, on average over these
websites, each constructor instantiated 12 objects, and some of the constructors generated a large
number of instances (e.g., one constructor function in facebook.com created 5901 objects).

Discussion. The existence of many singleton constructors presents opportunities for just-in-time
optimization [11] for JavaScript objects. Trace-based information may be used to specialize the
representation of the objects created by singleton constructors. In addition, the observation of other
constructors generating many object instances suggests that it may be important to accurately model
these constructors via advanced static analysis techniques (e.g., recency abstraction [33]).

4.3. Prototype-based inheritance

In this section, we summarize the observed characteristics of prototype-based inheritance for user
objects. All JavaScript objects (except for Object.prototype) may inherit properties from their
prototype objects. JavaScript object inheritance is decided at runtime by the constructor and also
can be changed at any program point.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:867-889
DOI: 10.1002/spe

EMPIRICAL STUDY OF THE DYNAMIC BEHAVIOR OF JAVASCRIPT OBJECTS 879

®No. of singleton constructors ®No. of non-singleton constructors ®No. of instances

100000

10000

1000
100 -
10 1

14

GOGL GOGL YAHOO YAHOO
constructors |nstances constructors instances constructors instances

Websites

(Logarithmic scale)

Figure 8. User object instances and constructors.

100000

10000

1000

10 I I I I
1
1

- 6-10 11-20 21-50 51-100 101- >1000
1000

Number of user object children of the same immediate prototype

o

objects of user objects
(logarithmic scale)

o

Number of immediate prototype

Figure 9. Characteristics of prototype object reuse.

Prototype object reuse. At the end of each user object’s lifetime, we observed its immediate
prototype object. We then grouped all user objects with the same immediate prototype object and
recorded the number of objects in the group, k. Figure 9 shows the number of prototype objects with
k immediate user object children. We observed that many of the objects (64%) were used as the
immediate prototype for only one user object. These results were not expected because inheritance
is usually thought of as a mechanism for code reuse. Because we only consider immediate prototype
objects in Figure 9, it is possible that many user objects inherit properties from a prototype object
that is higher in their prototype chains. Over all the immediate prototypes of user objects, a prototype
object had on average of 35 immediate children. "

¥ Object.prototype, the default prototype object, is always at the root of any prototype chain in JavaScript and is included
in the average. Many of the prototype objects in the rightmost bar in Figure 9 are instances of Object.prototype from
particular traces.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:867-889
DOI: 10.1002/spe

880 S. WEL F. XHAKAJ AND B. G. RYDER

®|nherited properties ¥ Local properties

-

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

(a) Inherited vs. local properties in the user objects.

® Accessible properties ~ ®Inaccessible properties

.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

(b) Accessible vs. inaccessible properties from prototype objects.

Hread-local ®read-inherit

e E—

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

(¢) Number of read-local operations vs. number of read-inherit operations.

Figure 10. Property inheritance and reads. The results of (a) and (b) were measured at constructed
operations; the results of (c) were measured during executions.

Discussion. Prototype inheritance is not easy to analyze via static analysis because the delega-
tion model allows the inheritance of an object to be changed at runtime. It is expensive to maintain
accurate prototype chains during static analysis. Our results in Figure 9 suggest that the actual inher-
itance of JavaScript objects is not complicated in most cases. For a prototype object that is used as
the immediate prototype for only one user object, it is possible to simplify the inheritance structure
by ‘inlining’ the inherited properties (i.e., because a prototype object is a ‘singleton’ prototype; the
properties visible from the child can be treated like local properties during static analysis, such that
the analysis avoids maintaining prototype chains and performing property lookups). This idea may
be applied to more than half of the prototype objects (according to Figure 9) using feedback-directed
optimization techniques. This may help increase both precision and performance.

Property inheritance and reads. Inherited properties serve as the goal for code reuse, while
overridden properties allow more specific behavior of objects. Figure 10(a) shows the percentage
of inherited and local properties of all the accessible properties in user objects at their construction
stage (constructed operations). For each user object at its constructed operation, we collected the
local property list and the property lists of its prototype objects. All properties in the local property
list were counted as local properties, and a subset of the properties in the property lists of its pro-
totype objects were counted as inherited properties conforming to the JavaScript property lookup
mechanism. We found that 13% of the properties were implemented for specific user objects, while
most of the properties (8§7%) were inherited from prototype objects.

Over all the properties in the prototypes of user objects, Figure 10(b) shows the percentage of
properties accessible from user objects (at the constructed operations). For the prototype objects
of each user object at its constructed operation, properties that were overridden were counted as
inaccessible properties; others were accessible properties. In Figure 10(b), 5% of the properties were
overridden so that they were inaccessible, and the rest (95%) were accessible. We observed that
objects higher in the prototype chains (closer to Object.prototype) often were associated with more
properties. Our hypothesis from this observation is that developers of JavaScript websites intend to
build/use large prototype objects allowing other objects to inherit properties from them.

The behavior of an object is reflected by the read operations associated with it. Figure 10(c) shows
the percentage of observed read-local operations and read-inherit operations of user objects. About
69% of the recorded read instructions did not require prototype object lookup (i.e., read-local).
Comparing with the results in Figure 10(a), we conclude that although the majority of the properties
of a user object may be inherited from its prototypes (at constructed operation), during execution,
local properties are read more often than inherited properties.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:867-889
DOI: 10.1002/spe

EMPIRICAL STUDY OF THE DYNAMIC BEHAVIOR OF JAVASCRIPT OBJECTS 881

Discussion. This result suggests that local properties may be more important to model accurately
and that there will be fewer local properties than inherited ones. The context-sensitive analysis
presented in Wei and Ryder [21] used a calling context that accurately reflected the properties of the
receiver object. Local properties and the prototype objects (but not the inherited properties) were
used in the calling context approximation; our results in Figure 10 support this analysis choice.

4.4. Native objects

We now study the characteristics of the native objects.

Native object statistics. It is important to understand the behavior of native objects in JavaScript
code because for most software tools built for JavaScript, only partial information for a native object
is available (i.e., the code that creates a native object is not available). Figure 11 shows the per-
centages of native objects not associated with any operation (i.e., the first six operations in Table I
omitting constructed), associated with only read operations (i.e., read-local or read-inherit), and
associated with write or delete operations (i.e., add, override, update or delete). Unlike user objects,
most native objects (90.5%) were inactive (i.e., without any operations on their properties). Note
that these objects may be associated with other operations not analyzed in this paper (e.g., calls).
For the rest of the native objects with operations, almost half of them were associated only with
read operations, suggesting that their properties remain consistent. Only 4.4% of native objects
experienced property value changes.

Discussion. This result suggests that it is possible to model a native object via its uses because of
its almost constant property set. Madsen et al. presented a use analysis to inference the behavior of
native objects [6]. The assumptions made by the authors (e.g., properties are not dynamically added
or removed after the object has been fully initialized) are reasonable for native objects based on our
empirical findings.

Number of operations. Figure 12 shows the distribution of the number of operations experi-
enced by native objects having at least one operation in the traces. Specifically, 25% of these native
objects were associated with one to three operations (similar to the result in Figure 4 for all object
categories), and 75% of these native objects had no more than 49 operations (significantly more

B object w/o operation Bobject w/ read operations only Bobject w/ write or del operations

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 11. Native object operations.

10000
1000

100

1 - WW\MMH|H|N|h||\|| (T T

1 97 1 311 457 674 1065 1771 3122 8069 104428
Number of operations

Number of native objects
(logarithmic scale)

Figure 12. Number of operations distribution for native objects.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:867-889
DOI: 10.1002/spe

882 S. WEL F. XHAKAJ AND B. G. RYDER

than the result in Figure 6 for user objects). This result shows that although most native objects were
associated with few operations, there are some specific native objects that are active.

5. JAVASCRIPT OBJECT BEHAVIORAL PATTERNS

In this section, we present a study on the object behavioral patterns across the benchmarks, and
then discuss some representative cases. An operation occurrence pattern illustrates a representa-
tive sequence of operations occurring on a specific object or property. We studied those operation
occurrence patterns that pose challenges for building software tools or that help to better understand
coding and usage practices of JavaScript objects. We also observed unexpected operation occur-
rence patterns. A property type change pattern presents frequently occurring type changes from one
object category to another on specific properties. We investigated cases of property type change
patterns that are not commonly understood.

5.1. Operation occurrence patterns — user objects

Recall that our analysis outputs history information (i.e., the sequence of operations) for an object.
The re-occurring sequence of operations on objects or properties may suggest a programmer’s
coding style, familiarity with JavaScript, and/or good/bad programming practice. The occurring
sequence of operations on an object may result not only from programming style but also from user
interactions (e.g., for user objects, the operations after construction may be triggered by user events).
Knowing the operation occurrence patterns, we can better investigate the challenges of understand-
ing JavaScript programs. In this section, we discuss studies that find behavioral patterns in the traces
from more than one million user objects and more than nine million of their properties.

Table II shows the interesting operation occurrence patterns we studied. Each pattern consists of
at most three different operation kinds. We designed these patterns based on the following: (i) opera-
tion sequences frequently observed in the experiments and (ii) the usage of delegation in JavaScript.
Patterns 1-5 reflect the sequences of operations on a specific property p, and patterns 6—9 show
the relationship between a constructed operation and other operations on a user object. We use two
quantifiers to express the number of times an operation occurs (i.e., + for operations occurring 1
or more times and {n/} for operations occurring n times exactly). We discuss each pattern and our
empirical observations in detail in the succeeding discussions.

Operation occurrence patterns on a specific property. Because delete is not supported by
most popular programming languages, its semantics have not been widely studied. In addition to
property deletions that remove local properties, property write operations (i.e., add, override, and
update operations) may also add/change the values of local properties. We present five operation
occurrence patterns to summarize unexpected or interesting sequences of operations experienced by
JavaScript properties.

First, we study the relationship between write operations and delete operations.

e Pattern 1: (add p | override p | update p)+ — delete p. This pattern occurred on 106,137 prop-
erties of the user objects in 56 out of 114 traces in the benchmarks. The average percentage
of properties of user objects exhibiting pattern 1 in the 56 traces was 0.9% with a standard

Table II. Operation occurrence patterns of user objects.

Operation occurrence pattern Notes
1 (add p | override p | update p)+ — delete p regular and abnormal
2 (add p | override p | update p){0} — delete p delete practices
3 read-local p+ — delete p — read-inherit p+ local and inherited property
4 read-inherit p+ — override p — read-local p+ | lookups for same p
5 read-local p+ — update p ‘temporary’ property
6 delete+ — constructed delete(s) before/after
7 constructed — delete+ constructed operations
8 update+ — constructed interesting writes
9 constructed — (add | override)+ before/after constructed
Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:867-889

DOI: 10.1002/spe

EMPIRICAL STUDY OF THE DYNAMIC BEHAVIOR OF JAVASCRIPT OBJECTS 883

deviation of 1.8% across the traces. With this relatively high standard deviation, we observed
the traces that contributed most to this pattern were from google.com, especially gmail (i.e.,
9% of properties of user objects in gmail, 62,055 in total). The scenarios of pattern 1 can
be interpreted as follows: (i) if the pattern occurs only a few times, the specific property is
accessible only between the property write operation and the delete; (ii) if the pattern occurs
on the same property many times, the property is most likely used as a temporary variable.
The majority (99.8%) of properties that exhibit pattern 1 only contain one iteration of the pat-
tern. This suggests that most uses of delete are to end the lifetime of a specific property; after
the local property is deleted, an inherited property (if exists) will be accessible. Nevertheless,
there are some properties exhibiting multiple occurrences of pattern 1. For example, pattern 1
occurred 149 times on one property of a user object in mozilla.com; this property lastAction is
used to check if a function may be called and then it is deleted. In this scenario, the developer
creates the property when needed and uses a delete statement to ensure that specific prop-
erty only exists in a certain part of the program. This usage is considered as a legitimate use
of delete.

e Pattern 2: (add p | override p | update p){0} — delete p. This pattern occurred on 70,143 prop-
erties of the user objects in 37 out of 114 traces in the benchmarks. The average percentage
of properties of user objects exhibiting pattern 2 in the 37 traces was 0.9% with a standard
deviation of 1.6%. The distribution of pattern 2 is similar to pattern 1 in that google.com dom-
inates the uses of the delefe operation with 7% of the properties of user objects (i.e., 45,440 in
total) in gmail exhibiting pattern 2. This pattern occurs more frequently than expected because
pattern 2 describes that a property p is deleted when it never had been added, overridden, or
updated. In JavaScript semantics, a delete operation on a non-existing local property does not
alter the object. The developers of JavaScript websites are likely using the delete statement to
ensure that a local property does not exist at some program point. Although the occurrence of
pattern 2 during execution will not produce a runtime error, it reflects the difficulty of con-
trolling properties of a JavaScript object. We regard this pattern as a bad practice because it
increases the number of non-meaningful operations in JavaScript programs and may adversely
affect program understanding. We would like to further investigate the frequent uses of delete
with google in future work.

After a local property p is deleted from the object o, reading o.p uses the prototype chain of o.
The following pattern shows that at different points of the execution, a delefe operation may result
in accessing local versus inherited properties.

e Pattern 3: read-local p+ — delete p — read-inherit p+. This pattern occurred on 311 (0.03%0)
properties of the user objects in the benchmarks. Although this pattern does not occur as fre-
quently as the others, it is the most straightforward pattern showing the influence of delete
operation on the uses of an object property. The occurrences of pattern 3 are limited to fewer
than 10 websites (e.g., npr.org), and the deleted properties are all function properties. Perhaps,
this implies specialization of the function properties; a read operation on the object results
in the use of a different property lookup mechanism at different program points (i.e., local
property versus prototype chain lookup). The Use of pattern 3 definitely poses challenges to
understanding the behavior of JavaScript programs.

The override operations also affect the local property list of an object such that reading a property
of an object may result in read-inherit versus read-local operations before and after the override
operations, respectively. In addition, because an update operation changes the value of a local prop-
erty, the read-local operations at different program points may return different results if an update
operation occurs between them.

e Pattern 4: read-inherit p+ — override p — read-local p+. This pattern occurred on 281,160
properties of the user objects in 73 out of 114 traces in the benchmarks. The average percentage
of properties of user objects exhibiting pattern 4 in the 73 traces was 1.6% with a standard
deviation of 3.2%. The two websites that experienced significant number of pattern 4 were
me.com (i.e., an Apple online services site when the data were collected; it is now replaced by

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:867-889
DOI: 10.1002/spe

884 S. WEL F. XHAKAJ AND B. G. RYDER

iCloud) and npr.org. This pattern directly shows the impact of an override operation on the uses
of the property, and it occurs more frequently than pattern 3. Similar to the pattern 3, pattern
4 indicates that understanding JavaScript property accesses can be difficult, requiring software
tool support.

e Pattern 5: read-local p+ — update p. This pattern occurred on 616,825 properties of the user
objects in 106 out of 114 traces in the benchmarks. The average percentage of properties of
user objects exhibiting pattern 5 in the 106 traces was 7% with a standard deviation of 5.5%. As
the most frequently observed pattern on a specific property in the benchmarks, pattern 5 exists
in almost all the websites. go.com, facebook.com, and yahoo.com are the three websites with
the highest percentage of properties of user objects experiencing this pattern (i.e., 41%, 23%,
and 21%, respectively). We observed that there were 127,052 properties in the benchmarks
that were read and updated more than once. If update happens frequently on a property, then
this property may be regarded as a temporary variable. For example, the property _next of an
object in me.com exhibits 12,620 iterations of this pattern; this property is used to build a data
structure similar to a linked list. Frequently updating a property value is a common object-
oriented practice for building data structures (e.g., list) and control structures (e.g., loop) in the
program, while updating the type of a property is unusual. In Section 5.2, we further study the
property type change patterns observed in the traces.

Operation occurrence patterns related to the constructed operations. We divide the life-
time of a user object into two stages: before and after construction. Different object behavior is
expected at these two stages: (i) before a user object is constructed, properties should be fre-
quently added/overriden and (ii) after a user object is constructed, its properties often may be used
and updated. Richards et al. [13] discussed object protocol dynamism (i.e., operation distribution
throughout object lifetime) on some representative websites, in which an object lifetime was also
divided by the construction phase. The results reported in Richards et al. [13] focused on the over-
all aggregate object behavior of websites. In our study, we present results on individual objects and
summarized more generalized conclusions across all benchmarks.

We first investigated the stage of a user object (before or after constructed) at which delete
operations happen.

e Pattern 6: delete+ — constructed. This pattern illustrates that property deletion occurs in the
construction stage of an object (i.e., the deleted property may not be accessed after the object
is constructed). It occurred on 34,725 user objects in 23 out of 114 traces in the benchmarks.
The average percentage of user objects exhibiting pattern 6 in the 23 traces was 9% with a
standard deviation of 12%. Traces from google.com (including gmail and google docs) all
contained objects that experienced many occurrences of this pattern, from 18% to 51% of user
objects in each trace. Other websites that frequently exhibit pattern 6 (more than 5% of user
objects) are virtualsecrets.com and nor.org. There is a strong correlation between pattern 6 and
pattern 2. Most of the deleted properties within the construction stage do not exist locally at
the time of deletion. For example, an object from myspace.com exhibits seven deletions of the
same property ¢ in its constructor, although the property never exists locally. After inspecting
the code, we found that when several function properties of the object are defined, the delete
statement (i.e., delete this.q) will always execute without checking the existence of the property
q. Along with pattern 2, we hypothesize the following two scenarios explaining this practice:
(i) developers use the delete to ensure a specific property does not exist at a certain program
point, not knowing for sure if the property exists and (ii) as JavaScript software evolves, a
delete operation that used to be meaningful becomes useless, and it is not noticed or removed
because it does not affect program behavior.

e Pattern 7: constructed — delete+. The occurrence of the delete operation after the construction
stage is considered normal if the property is used before the deletion (e.g., pattern 1). Pattern
7 occurred on 42,372 user objects in 56 out of 114 traces in the benchmarks. The average
percentage of user objects exhibiting pattern 7 in the 23 traces was 4.3% with a standard devi-
ation of 9%. Pattern 7 was observed in a larger set of websites than pattern 6. In addition to
google.com, many user objects from facebook.com also exhibited pattern 7. We observed that

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:867-889
DOI: 10.1002/spe

EMPIRICAL STUDY OF THE DYNAMIC BEHAVIOR OF JAVASCRIPT OBJECTS 885

deletions happen frequently in some objects; more than 500 objects are associated with at least
50 delete operations after the construction stage. Potentially, these objects exhibit very different
behaviors in between these delete operations. We also observed that among all the user objects
exhibiting pattern 7, 17,655 of them had a delete operation before usage of a specific property.
Discussions of pattern 2 addressed these occurrences.

Property addition and overriding are common for an object within the construction stage. We
conducted further study on the update operations in the construction stage and on the add/override
operations that happen after an object is constructed.

e Pattern 8: update+ — constructed. This pattern occurred on 60,742 user objects in 90 out of
114 traces in the benchmarks, much more widely observed than the delete operation related
patterns (i.e., patterns 6 and 7). The average percentage of user objects exhibiting pattern 8 in
the 90 traces was 5.5% with a standard deviation of 6.7%. Websites that most frequently experi-
enced pattern 8 were yahoo.com, go.com, and me.com. Updating properties in the construction
stage suggests that some JavaScript object constructor functions do not just create properties.
For example, an object from maps.google.com contains 764 update operations at the construc-
tion stage and all its operations (more than 2800) occurred at the construction stage. Updating
a property within a constructor is not considered to be a good practice unless it is necessary
for initializing data structures, because then the original value of the property is not accessible
when object construction finishes. We hope to study pattern 8 more to distinguish good and
bad programming practices in future work.

e Pattern 9: constructed — (add | override)+. This pattern occurred on 265,224 (20.56%) user
objects in 106 out of 114 traces in the benchmarks. The average percentage of user objects
exhibiting pattern 9 in the 106 traces was 28% with a standard deviation of 23%. For some
websites (i.e., easychair.org, raphaeljs.com, and me.com), most user objects (more than 90%)
experienced pattern 9. Thus, the local property lists of many user objects are expanded by
adding a new property or overriding an inherited property. This result conforms to our obser-
vations in Figure 5 and indicates that the behavior of a JavaScript object cannot be safely
approximated by its properties at the point of its construction. The presence of this pat-
tern demonstrates the fundamental difference between a JavaScript object and a pre-defined
class-based object, illustrating the flexibility of JavaScript programs.

5.2. Property type change patterns — user objects

We have observed that the property types of user objects change very often (Figure 7). In this section,
we investigate frequently occurring property type change patterns for user objects.

Table IIT shows the 10 most frequent property type change patterns. Recall that in our study, if a
property value changes from referring to one user object to referring to another user object that is
created by a different constructor, we assume a type change occurs because these user objects may
exhibit significantly different behavior. For functions and anonymous objects, we count a property
change from one instance to another as a property type change. For the basic datatypes, on the other
hand, a property type change alters one basic datatype to another (e.g., String — Boolean). It was
expected that the top three most frequently occurring patterns would be changes between the same
object categories, with the anonymous object — anonymous object occurring most often. However,

Table III. Property type change patterns.

Pattern Occurrences Pattern Occurrences
anonymous — anonymous 59674 anonymous — basic 3138
user — user 43223 basic — user 1320
function — function 34104 basic — anonymous 260
function — user 6384 basic — function 144
basic — another basic 3726 user — function 46
Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:867-889

DOI: 10.1002/spe

886 S. WEL F. XHAKAJ AND B. G. RYDER

the function — user object, anonymous — basic datatype, and basic datatype — user object patterns
all occurred more than 1000 times in the benchmarks. These property type changes suggest that
many properties are used for unrelated purposes at different program points, another coding practice
that poses challenges for understanding JavaScript programs. We observed all possible property type
change patterns among basic datatypes, user objects, functions, and anonymous objects (except for
anonymous — function).

As for individual websites, the five websites we observed with the most property type change
patterns of user objects were google.com (gmail and google maps), 280slides.com, me.com, face-
book.com, and flapjax-lang.org. Among the websites where we observed significant number of
property type change patterns (i.e., more than 100 occurrences), anonymous — anonymous and
user — user patterns occurred most frequently on me.com and google.com, respectively. Most func-
tion — function and function — user patterns were from ebay.com, while most basic — another
basic and anonymous — basic patterns were from flapjax-lang.org. For the less frequently observed
patterns, flapjax-lang.org, me.com, and google.com dominated the occurrences of basic — anony-
mous, basic — function, and user — function patterns, respectively. Based on the results previously
discussed, we observed that google.com and me.com were applying quite flexible object property
changes in their code.

We studied some interesting cases among the property type change patterns. Two proper-
ties (i.e., initialActiveChats and initialFocusedChat) of a user object from facebook.com change
their types from anonymous to Boolean and from String to Boolean, respectively. After manu-
ally inspecting the source code, we observed that these two properties were set to meaningful
values (e.g., this.initialActiveChats = activeChats) when used as parameters for calling a func-
tion (this._loadlnitialTabs.bind(this, this.initialActiveChats, this.initialfocusedChat)) and then set to
false. These properties are only used at certain points of the program and instead of being deleted,
the developers kept them as Boolean variables. Based on our observations, we believe that because
JavaScript allows property type changes and property deletions at runtime, developers choose dif-
ferent coding idioms to implement a property needed only for the part of the program execution.
Given our observations, it is difficult to summarize a common practice for coding this usage of
JavaScript objects.

6. CONCLUSIONS AND FUTURE WORK

JavaScript is widely used for developing client-side web applications. Its dynamic characteristics
(e.g., dynamic typing) pose software engineering challenges such as program understanding and
security. In this paper, we performed a study on JavaScript websites to better understand object
behavior. We defined and evaluated several dynamic metrics on certain categories of JavaScript
objects (i.e., user objects and native objects). The metrics cover measurements of operations, object
sizes, property changes, constructors, and prototype-based inheritance. From these results, we made
several interesting observations:

e The behavior of user objects is very different from objects in other categories. User objects
created by constructors actively use prototype-based inheritance. Their properties change often;
for example, the local size of a user object is likely to expand after it is constructed. User
objects are also likely to be associated with more operations than other categories of objects.
Thus, a practical software tool for JavaScript requires a more accurate model for user objects.

e JavaScript inheritance is not well understood. The results on the use of a prototype-based
inheritance do not exemplify good practices of object inheritance. (i) Immediate prototype
objects are not reused often. (ii) Although many properties may be accessed via prototype
objects, user objects rarely do this. Because the behavior of prototype-based inheritance is
very different from class-based inheritance, JavaScript analysis techniques should build specific
models for prototyping

e Only a few native objects may affect program behavior. Although there are many native
objects in JavaScript applications, most of them are inactive in application code. Read opera-
tions on the local properties are the most frequently occurring operations on a native object.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:867-889
DOI: 10.1002/spe

EMPIRICAL STUDY OF THE DYNAMIC BEHAVIOR OF JAVASCRIPT OBJECTS 887

According to the observations, it makes sense to model JavaScript native objects based on their
uses (e.g., [6]).

We investigated frequently occurring behavioral patterns for user objects including patterns of
operations and property type changes.

e Some operation occurrence patterns of user objects are widely observed across different
websites. Interesting operation occurrence patterns (e.g., pattern 4 in Table II) frequently occur
in many websites, suggesting a common coding or user interaction style of JavaScript objects.
Knowing those patterns may help improve understanding of JavaScript application behavior.

o Certain websites exhibit more active property type changes. Developers of some websites
seems to intentionally implement specific property type change patterns more often. Each prop-
erty type change pattern was found more frequently in a small number of websites. There were
different dominant websites for each pattern.

Based on these findings and observations, we believe that specialized techniques should be used
to analyze specific JavaScript objects because of their complicated behaviors.

e A flow-sensitive analysis (e.g., [21, 22, 34]) may accurately model the behavior of a JavaScript
object whose properties frequently change at different program points.

e Because there are only a few immediate prototype objects whose properties are often inherited,
the efforts to accurately model prototype-based inheritance (e.g., [9, 21]) should be focused on
these prototype objects.

e Because there is a small fraction of native objects that may affect program behavior, specialized
techniques (e.g., [6]) should be applied only for these native objects.

To the best of our knowledge, despite the fact that many of these techniques were present in the
literature, there is no existing JavaScript static analyzer that can accurately analyze real JavaScript
websites because of lack of scalability. We need to choose analysis techniques carefully for specific
objects to achieve a sweet spot between precision and scalability for JavaScript analysis.

Because web technologies are developing quickly, in future work, we would like to exam-
ine how JavaScript web applications evolve and how evolution impacts object behavior. We also
are interested in investigating more deeply into actual JavaScript code to observe the patterns
identified, hoping to better summarize coding style. Finally, we would like to compare the behav-
ior of JavaScript applications with software written in other dynamic programming languages
(e.g., Ruby and Python).

REFERENCES

1. W3techs web technology surveys. Available from: http://w3techs.com/technologies/overview/client_side_language/
all [last accessed May 2015].

2. Stackoverflow 2015 developer survey. Available from: http://stackoverflow.com/research/developer-survey-2015#
tech [last accessed May 2015].

3. Lieberman H. Using prototypical objects to implement shared behavior in object-oriented systems. Conference Pro-
ceedings on Object-oriented Programming Systems, Languages and Applications, OOPLSA ’86. ACM: New York,
NY, USA, 1986; 214-223.

4. Wegner P. Dimensions of object-based language design. Conference Proceedings on Object-oriented Programming
Systems, Languages and Applications, OOPSLA "87. ACM: New York, NY, USA, 1987; 168-182.

5. Schifer M, Sridharan M, Dolby J, Tip F. Effective smart completion for JavaScript. Technical Report RC25359, IBM,
2013.

6. Madsen M, Livshits B, Fanning M. Practical static analysis of JavaScript applications in the presence of frameworks
and libraries. Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2013.
ACM: New York, NY, USA, 2013; 499-509.

7. Alimadadi S, Sequeira S, Mesbah A, Pattabiraman K. Understanding JavaScript event-based interactions. Proceed-
ings of the 36th International Conference on Software Engineering, ICSE 2014. ACM: New York, NY, USA, 2014;
367-3717.

8. Guarnieri S, Livshits B. Gatekeeper: mostly static enforcement of security and reliability policies for JavaScript code.
Proceedings of the 18th Conference on USENIX Security Symposium, SSYM’09. USENIX Association: Berkeley,
CA, USA, 2009; 151-168.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:867-889
DOI: 10.1002/spe

http://w3techs.com/technologies/overview/client_side_language/all
http://w3techs.com/technologies/overview/client_side_language/all
http://stackoverflow.com/research/developer-survey-2015#tech
http://stackoverflow.com/research/developer-survey-2015#tech

888 S. WEL FE. XHAKAJ AND B. G. RYDER

9.

10.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

Guarnieri S, Pistoia M, Tripp O, Dolby J, Teilhet S, Berg R. Saving the world wide web from vulnerable JavaScript.
Proceedings of the 2011 International Symposium on Software Testing and Analysis, ISSTA ’11. ACM: New York,
NY, USA, 2011; 177-187.

Wei S, Ryder BG. Practical blended taint analysis for JavaScript. Proceedings of the 2013 International Symposium
on Software Testing and Analysis, ISSTA 2013. ACM: New York, NY, USA, 2013; 336-346.

. Gal A, Eich B, Shaver M, Anderson D, Mandelin D, Haghighat MR, Kaplan B, Hoare G, Zbarsky B, Orendorff J,

Ruderman J, Smith EW, Reitmaier R, Bebenita M, Chang M, Franz M. Trace-based just-in-time type specialization
for dynamic languages. Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’09. ACM: New York, NY, USA, 2009; 465-478.

Hackett B, Guo S-Y. Fast and precise hybrid type inference for JavaScript. Proceedings of the 33rd ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI *12. ACM: New York, NY, USA, 2012;
239-250.

Richards G, Lebresne S, Burg B, Vitek J. An analysis of the dynamic behavior of JavaScript programs. Proceedings
of the 2010 ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’10. ACM:
New York, NY, USA, 2010; 1-12.

Richards G, Hammer C, Burg B, Vitek J. The eval that men do: a large-scale study of the use of eval in JavaScript
applications. Proceedings of the 25th European Conference on Object-oriented Programming, ECOOP’11. Springer-
Verlag: Berlin, Heidelberg, 2011; 52—78.

Ratanaworabhan P, Livshits B, Zorn BG. JSMeter: comparing the behavior of JavaScript benchmarks with real web
applications. Proceedings of the 2010 USENIX Conference on Web Application Development, WebApps’10. USENIX
Association: Berkeley, CA, USA, 2010; 3-3.

Martinsen JK, Grahn H. A methodology for evaluating JavaScript execution behavior in interactive web applications.
Proceedings of the 2011 9th IEEE/ACS International Conference on Computer Systems and Applications, AICCSA
’11. IEEE Computer Society:, Washington, DC, USA, 2011; 241-248.

Ocariza Jr. FS, Pattabiraman K, Zorn B. JavaScript errors in the wild: an empirical study. Proceedings of the 2011
IEEE 22nd International Symposium on Software Reliability Engineering, ISSRE ’11. IEEE Computer Society:
Washington, DC, USA, 2011; 100-109.

Ocariza F, Bajaj K, Pattabiraman K, Mesbah A. An empirical study of client-side JavaScript bugs. 2013 ACM / IEEE
International Symposium on Empirical Software Engineering and Measurement 2013; 0:55-64.

Yue C, Wang H. Characterizing insecure JavaScript practices on the web. Proceedings of the 18th International
Conference on World Wide Web, WWW ’09. ACM: New York, NY, USA, 2009; 961-970.

Yue C, Wang H. A measurement study of insecure JavaScript practices on the web. ACM Transaction on the Web
2013; 7(2):7:1-7:39.

Wei S, Ryder BG. State-sensitive points-to analysis for the dynamic behavior of JavaScript objects. Proceedings of
the 28th European Conference on Object-oriented Programming. Springer-Verlag: Berlin, Heidelberg, 2014; 1-26.
Jensen SH, Mgller A, Thiemann P. Type analysis for JavaScript. Proceedings of the 16th International Symposium
on Static Analysis, SAS ’09. Springer-Verlag: Berlin, Heidelberg, 2009; 238-255.

Chugh R, Herman D, Jhala R. Dependent types for JavaScript. Proceedings of the ACM International Conference
on Object Oriented Programming Systems Languages and Applications, OOPSLA "12. ACM: New York, NY, USA,
2012; 587-606.

Lerner BS, Politz JG, Guha A, Krishnamurthi S. TeJaS: retrofitting type systems for JavaScript. Proceedings of the
9th Symposium on Dynamic Languages, DLS "13. ACM: New York, NY, USA, 2013; 1-16.

Schifer M, Sridharan M, Dolby J, Tip F. Dynamic determinacy analysis. Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’13. ACM: New York, NY, USA, 2013;
165-174.

Andreasen E, Mgller A. Determinacy in static analysis for jQuery. Proceedings of the ACM International Conference
on Object Oriented Programming Systems Languages and Applications, OOPSLA ’14. ACM: New York, NY, 2014;
17-31.

Dufour B, Driesen K, Hendren L, Verbrugge C. Dynamic metrics for Java. Proceedings of the 18th Annual ACM
SIGPLAN Conference on Object-oriented Programing, Systems, Languages, and Applications, OOPSLA "03. ACM:
New York, NY, USA, 2003; 149-168.

Holkner A, Harland J. Evaluating the dynamic behaviour of Python applications. Proceedings of the Thirty-
second Australasian Conference on Computer Science - Volume 91, ACSC ’09. Australian Computer Society, Inc.:
Darlinghurst, Australia, Australia, 2009; 19-28.

Furr M, An J-hD, Foster JS. Profile-guided static typing for dynamic scripting languages. Proceedings of the 24th
ACM Sigplan Conference on Object Oriented Programming Systems Languages and Applications, OOPSLA ’09.
ACM: New York, NY, USA, 2009; 283-300.

Hills M, Klint P, Vinju J. An empirical study of PHP feature usage: a static analysis perspective. Proceedings of the
2013 International Symposium on Software Testing and Analysis, ISSTA 2013. ACM: New York, NY, USA, 2013;
325-335.

Ryder BG. Dimensions of precision in reference analysis of object-oriented programming languages. Proceedings
of the 12th International Conference on Compiler Construction, CC’03. Springer-Verlag: Berlin, Heidelberg, 2003;
126-137.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:867-889

DOI: 10.1002/spe

EMPIRICAL STUDY OF THE DYNAMIC BEHAVIOR OF JAVASCRIPT OBJECTS 889

32. Sridharan M, Dolby J, Chandra S, Schifer M, Tip F. Correlation tracking for points-to analysis of JavaScript. Pro-
ceedings of the 26th European Conference on Object-oriented Programming, ECOOP’12. Springer-Verlag: Berlin,
Heidelberg, 2012; 435-458.

33. Balakrishnan Gogul, Reps Thomas. Recency-abstraction for heap-allocated storage. Proceedings of the 13th
International Conference on Static Analysis, SAS’06. Springer-Verlag: Berlin, Heidelberg, 2006; 221-239.

34. Kashyap V, Dewey K, Kuefner EA, Wagner J, Gibbons K, Sarracino J, Wiedermann B, Hardekopf B.
JSAIL: A static analysis platform for JavaScript. Proceedings of the 22nd ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, FSE 2014. ACM: New York, NY, USA, 2014; 121-132.
http://doi.acm.org/10.1145/2635868.2635904.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:867-889
DOI: 10.1002/spe

	Empirical study of the dynamic behavior of JavaScript objects
	Summary
	Introduction
	Background and Related Work
	Dynamic behavior of JavaScript objects
	Related work

	Experimental Design
	Design decisions
	Experimental setup
	Threats to validity

	Metrics
	General metrics of JavaScript objects
	User objects
	Prototype-based inheritance
	Native objects

	JavaScript Object Behavioral Patterns
	Operation occurrence patterns – user objects
	Property type change patterns – user objects

	Conclusions AND Future Work
	REFERENCES

