q

Check for
updates

Towards Improving Introductory Computer
Programming with an ITS for Conceptual
Learning

Franceska Xhakaj(M) and Vincent Aleven®™®

Human-Computer Interaction Institute, Carnegie Mellon University,
Pittsburgh, PA 15213, USA
{francesx,aleven}@cs. cmu. edu

Abstract. Computer programming is becoming important in almost every
profession. However, programming is still difficult for students to learn. In this
work, we focus on helping students acquire strong conceptual and procedural
knowledge of programing. We propose to create a new Intelligent Tutoring
System (ITS) that will support students in two types of conceptually-oriented
activities: code tracing and code comprehension. Further, we propose to run a
study to evaluate whether the ITS can support students’ conceptual learning and
transfer to procedural learning of computer programming.

Keywords: Conceptual learning - Procedural learning
Intelligent Tutoring Systems + Computer Science education

1 Introduction

Computer programming is a key skill set in many professions and STEM domains [8].
However, learning programming is hard, and typical introductory programming
instruction may leave substantial room for improvement [5, 14]. Prior research in
Computer Science education suggests that practice with conceptually-oriented activi-
ties (e.g., activities that emphasize knowledge of code constructs and code execution)
can be very helpful in learning procedural knowledge (e.g., skills of generating code)
[2, 9, 11]. Although this prior work shows promise, it does not take full advantage of
current insights in the cognitive science and mathematics education literature on
transfer between conceptual and procedural learning and how they mutually influence
each other [10]. Nor have the conceptually-oriented approaches tested in prior CS
education research taken advantage of the capabilities of advanced learning tech-
nologies, such as Intelligent Tutoring Systems (ITSs) [13]. We propose a program of
research that capitalizes on insights from cognitive science and on advanced learning
technologies to facilitate the learning of programming. The proposed research has two
strands of work. First, we will create a new ITS building on our existing infrastructure
(CTAT [1]). The new ITS will support students in two types of conceptually-oriented
learning activities: code tracing and code comprehension. Second, we will conduct an
experimental study that will test whether and how such an ITS can support conceptual
learning and transfer to procedural learning in the area of computer programming.

© Springer International Publishing AG, part of Springer Nature 2018
C. Penstein Rosé et al. (Eds.): AIED 2018, LNAI 10948, pp. 535-538, 2018.
https://doi.org/10.1007/978-3-319-93846-2_101

536 F. Xhakaj and V. Aleven

2 The Intelligent Tutoring System: TiPs

Traditional instruction in programming targets conceptual knowledge with (video)
lectures, textbook reading, programming exercises and with a “stepper” tool for
stepping through code execution line-by-line. However, more highly interactive and
adaptive instruction supported by ITSs may be more effective at helping students
develop conceptual knowledge. In Fig. 1 we show an initial design of TiPs (Transfer in
Programming system), the proposed ITS that will support two types of conceptually-
oriented activities: code tracing (left) and code comprehension (right). TiPs will target
common challenging topics in introductory computer programming [e.g., 3, 12]
including variables, the assignment operation, conditional statements, loops, etc.

[TiPS: Code Tracing [TiPs: Code Comprehension
When the function in line 7 is Explain in plain English what
executed, what is printed? the fi ine: .
Program State e function is doing. Line: s X
def functionl (x, y): 1- def functionl (x, y):
Previous Current if x <y Line: Print
print x 9 X
= Line: else:

int y

onswn

print y Line:
function1(s,7) Value of x.

PRV SREAN

Line: 5 Print
Value of y: .

The program prints " when X<y

e, ? _
X y T Otherwise the program prints
? Is condition true? A =
o Yes . The program prints ¥
Hint x
Select where we go into next: y
Line 2-if branch The smallest number

Line 3-then part of if branch The biggest number

Line 4-else branch Both

[Nore

Fig. 1. Mockups of TiPs, the proposed ITS. Code tracing (left), code comprehension (right).

In code-tracing activities, the student tracks a program’s changing internal state
line-by-line (Fig. 1, left). The student generates and fills in the program state at each
step of code execution, with support of feedback and hints from TiPs. TiPs simulates
code execution by means of (1) a green arrow pointing to the current line, and (2) a
greyed out area for code that is not relevant to the current step. TiPs will remove this
scaffolding gradually as the student gains more competence. For each executed line, the
student enters the line number, the values of the variables, and answers questions at the
bottom. Once the student has correctly entered the current program state, TiPs
dynamically changes the interface to let the student fill in the next state. This type of
activity is likely to support acquisition of conceptual knowledge of code constructs and
code execution, as it involves direct application of this kind of knowledge in the
context of a piece of code. Past research suggests that code tracing can have beneficial
effects for students, although it does not provide a fully rigorous demonstration of such
effects on conceptual and in particular transfer to procedural knowledge of program-
ming, as we plan to test in this work [4, 7, 15].

In code-comprehension activities, the student is asked to explain at a high level
what the function of a given piece of code is (Fig. 1, right). In contrast to code tracing,
the emphasis here is on being able to understand code at a higher level, without

Towards Improving Introductory Computer Programming with an ITS 537

simulation of code execution. For each line, the student chooses from a drop-down
menu what the construct in that line is doing. Once an instruction is selected, the
appropriate values appear on the right for the student to fill in. The student then is
prompted to explain what the code is doing, with the aid of the tutor as needed. Code-
comprehension exercises may help students develop conceptual knowledge of how the
individual constructs can work together to realize desired functionality. We know of no
rigorous studies that showed that code-comprehension practice can foster conceptual or
procedural knowledge. [6] found that tracing, explaining and writing code are statis-
tically significantly correlated, but these results are correlational, not causal.

3 Proposed Study

We propose to run a study to find out whether three forms of conceptually-oriented
activities (code tracing, code comprehension, or a combination), supported by an ITS,
(1) enhance students’ conceptual knowledge of code and (2) transfer to students’ work
on code-generation exercises (e.g., enhances the learning of programming skill). The
study will examine transfer from conceptually to procedurally-oriented activities.

The study will have a2 x 2 design with experimental factors code tracing and code
comprehension. Students will be randomly assigned to conditions. Students in all
conditions will do two blocks of activities. In the first block, students will engage in
(1) code tracing, (2) code comprehension, (3) a combination, or (4) neither (they will
engage in code generation). The code-tracing and code-comprehension activities will
be supported by the proposed ITS. The second block will involve a sequence of code-
generation exercises for all conditions. Before and after the first block, students will
complete a pre- and post-test, to assess both conceptual and procedural knowledge of
programming. The conceptual items will be based on existing literature and will
contain code-tracing and code-comprehension exercises designed to measure concep-
tual transfer [3, 12]. The procedural items will involve writing code in the language that
students are studying. We will create new problems for conceptual and procedural
items that will contain known constructs, alone and combined in new ways. In addition,
we will collect ITS log data that we will use to extract measures of the students’
performance and knowledge growth in the tutor activities. We will conduct analyses to
investigate how code-tracing and code-comprehension exercises affect students’ con-
ceptual and procedural knowledge of programming. We hypothesize that both these
activities positively affect conceptual knowledge and outcomes in procedural learning
from the code-generation activities. We hypothesize further that code comprehension is
more effective in the presence of code tracing, as code tracing may be a step along the
way to code comprehension [6].

4 Expected Contributions

If successful, the proposed research will generate new scientific knowledge about whether
(1) an ITS that supports conceptually-oriented activities (code tracing and code com-
prehension) can enhance conceptual knowledge and transfer to procedural knowledge of

538 F. Xhakaj and V. Aleven

computer programming, (2) which kind of conceptually-oriented activities are more
effective in this regard. As a practical contribution, the research will yield a novel ITS that
will support conceptually-oriented activities for learning programming. The results and
findings could inform the design of other ITSs for introductory programming and of
instruction beyond ITSs.

References

1. Aleven, V., McLaren, B.M., Sewall, J., van Velsen, M., Popescu, O., Demi, S., Ringenberg,
M., Koedinger, K.R.: Example-tracing tutors: intelligent tutor development for nonpro-
grammers. Int. J. Artif. Intell. Educ. 26(1), 224-269 (2016)

2. Bayman, P., Mayer, R.E.: Using conceptual models to teach BASIC computer programming.
J. Educ. Psychol. 80(3), 291-298 (1988)

3. Caceffo, R., Wolfman, S., Booth, K.S., Azevedo, R.: Developing a computer science concept
inventory for introductory programming. In: Proceedings of the 47th ACM Technical
Symposium on Computing Science Education, pp. 364-369. ACM (2016)

4. Kumar, A. N.: A study of the influence of code-tracing problems on code-writing skills. In:
Proceedings of the 18th ACM Conference on Innovation and Technology in Computer
Science Education, pp. 183-188. ACM (2013)

5. Lahtinen, E., Ala-Mutka, K., Jarvinen, HM.: A study of the difficulties of novice
programmers. ACM SIGCSE Bull. 37(3), 14-18 (2005)

6. Lister, R., Fidge, C., Teague, D.: Further evidence of a relationship between explaining,
tracing and writing skills in introductory programming. ACM SIGCSE Bull. 41(3), 161-165
(2009)

7. Nelson, G.L., Xie, B., Ko, A.J.: Comprehension first: evaluating a novel pedagogy and
tutoring system for program tracing in CS1. In: Proceedings of the 2017 ACM Conference
on International Computing Education Research, pp. 2-11. ACM (2017)

8. Orsini, L.: Why Programming is the Core Skill of the 21st Century. https://readwrite.com/
2013/05/31/programming-core-skill-21st-century/. Accessed 12 Dec 2017

9. Pennington, N., Nicolich, R., Rahm, J.: Transfer of training between cognitive subskills: is
knowledge use specific? Cogn. Psychol. 28(2), 175-224 (1995)

10. Rittle-Johnson, B., Siegler, R.S.: The relations between conceptual and procedural
knowledge in learning mathematics: a review. In: The Development of Mathematical Skill,
pp- 75-110. Psychology Press, Hove (1998)

11. Shih, Y.F., Alessi, S.M.: Mental models and transfer of learning in computer programming.
J. Res. Comput. Educ. 26(2), 154-175 (1993)

12. Tew, A.E.: Assessing fundamental introductory computing concept knowledge in a language
independent manner. (Doctoral dissertation), Georgia Institute of Technology, Georgia, USA
(2010)

13. VanLehn, K.: The relative effectiveness of human tutoring, intelligent tutoring systems, and
other tutoring systems. Educ. Psychol. 46(4), 197-221 (2011)

14. Watson, C., Li, F.W.: Failure rates in introductory programming revisited. In: Proceedings of
the 2014 Conference on Innovation and Technology in Computer Science Education,
pp. 39-44. ACM (2014)

15. Xie, B., Nelson, G.L., Ko, A.J.: An explicit strategy to scaffold novice program tracing. In:
Proceedings of the 49th ACM Technical Symposium on Computer Science Education,
pp. 344-349. ACM (2018)

