
A New Approach To Teaching Red Black Trees

Franceska Xhakaj
Department of Computer Science

Lafayette College
Easton, Pennsylvania 18042
xhakajf@lafayette.edu

Chun Wai Liew
Department of Computer Science

Lafayette College
Easton, Pennsylvania 18042

liewc@lafayette.edu

ABSTRACT
Red black trees are considered an important data structure
and students can find it to be challenging and difficult to
learn. Many approaches to teaching red black trees have
been tried but not very successfully. This paper describes
our new approach, the granularity approach, to teaching
the top-down insertion algorithm for red black trees. Past
approaches have focused on teaching the mechanics of ap-
plying the rules (color flip, single rotation and double rota-
tion). The new approach is based on the hypothesis that
students have more difficulty selecting the correct rule than
in applying a selected rule. Our approach focuses on helping
students learn how to correctly select the rules to be applied
We supplement classroom lectures with an intelligent tutor-
ing system that incorporates our approach. The approach
and the tutoring system were used and evaluated in a small
data structures class in the fall semester of 2014. The early
results indicate that our approach and tutoring system are
effective at helping students learn the top-down insertion
algorithm.

Categories and Subject Descriptors
K.3.1 [Computer Uses in Education]: Computer science
education; E.1 [Data Structures]

Keywords
Balanced trees, red black trees

1. INTRODUCTION
In a computer science curriculum data structures provides

students with the knowledge and skills that are fundamental
in later parts of the curriculum, such as in databases, net-
works, architecture, algorithms, etc [3]. Data structures are
part of the programming fundamentals and core topics in a
computer science curriculum [1]. Red black trees (and all
balanced trees) are an important data structure with many
applications. Learning the red black tree algorithms can

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITiCSE’15, July 6–8, 2015, Vilnius, Lithuania.
Copyright c© 2015 ACM 978-1-4503-3440-2/15/07 ...$15.00.
DOI: http://dx.doi.org/10.1145/2729094.2742624.

be quite challenging and difficult for the students for many
reasons. Many approaches to teaching red black trees have
been tried but they have not been very successful. These ap-
proaches have focused on teaching students the mechanics
of applying the transformations (color flip, single rotation,
double rotation) associated with red black trees. This paper
describes a new approach for teaching the top-down inser-
tion algorithm for constructing and maintaining red black
trees. The new approach focuses on the recognition of the
applicability of the transformations based on the hypothe-
sis that students have more difficulty determining when to
apply a transformation rather than how to apply it. We
tested and evaluated our approach in a data structures class
in the fall semester of 2014. The early experimental results
validate our hypothesis and indicate that the approach is
successful in helping students learn the top-down insertion
algorithm for red black trees.

2. RED BLACK TREES
A red black tree is a self balancing binary search tree data

structure, that has the following properties [9]:

1. The nodes of the tree are colored either red or black.

2. The root of the tree is always black.

3. A red node cannot have any red children.

4. Every path from the root to a null link contains the
same number of black nodes.

A red black tree must display all of the properties listed
above. In addition, every operation performed on a red black
tree such as insertion or deletion, should preserve these prop-
erties resulting in a changed, but still correct red black tree.

The top-down insertion algorithm described in [9] starts at
the root of the tree and in a single iterative pass, modifies the
tree by applying one or more of the insertion rules described
below and eventually adds a new item to the tree. A new
item is always inserted in a leaf position in the tree, and it
is colored red.

Just as with a binary search tree, during the top down
traversal the algorithm selects the next node to examine
based on a comparison of values at the current node and
the value to be inserted. In addition, the algorithm uses
the current node reference to keep track of its position in
the tree and also to determine which rules (see description
below) are applicable at the current node. The current node
is marked with an X in each of the rules shown in Figure 1.

278

Figure 1: Top-Down insertion rules (top to bottom):
color flip, single rotation, double rotation. X is the
current node and relative to X, C1, C2, P, S, and
G are the left child, right child, parent, sibling and
grandparent. A, B, C, D and E are other nodes
which may or may not be present.

Figure 1 shows the rules for top-down insertion in red
black trees [9]. Starting from the top we have color flip,
single rotation, and double rotation. In addition, we consider
as a fourth rule simple insertion, insertion of a leaf node into
the tree. There is also a fifth rule color root black, which is
applied at the end of every insertion operation to ensure
that the root of the tree is always black, as specified by the
second red black tree property. The first rule (color flip) is
to minimize the transformations arising from inserting a new
leaf node that is colored red. The second (single rotation)
and third rules (double rotation) are used to correct any
violations (two red nodes in sequence) that arise from either
applying rule 1 or by inserting a new node (simple insertion).
The rules together ensure that only a single traversal from
the root of the tree to a leaf is required to insert a new node
and still maintain the red black tree properties.

The rules described above are not always applicable and
applicability (preconditions of the rules) is determined by
the color and structural relationships of other nodes in rela-
tion to the current node. For example, for a color flip (rule
1) to be applicable the current node must be black and its
two children must be red (For further details, please see [9]).
Rule 1 is always applied first (if applicable) and if this results
in two red nodes in sequence, either rule 2 or 3 is applied to
correct the problem. Similarly after applying rule 4 to insert
a new node, rules 2 and 3 are applied to correct any prob-
lems. To determine what rules are applicable at a node, we
have to find (1) the links of the current node, i.e., identify
the nodes that are the children, parent and siblings of the
current node, and (2) the color of each of these nodes.

3. TEACHING RED BLACK TREES
Typically, students are first introduced to the properties

of red black trees and then taught the algorithm for insertion
and later, deletion. A standard way of evaluating whether
students have learned the insertion algorithm is for the in-

structor to provide an input sequence of data and have the
student construct the equivalent red black tree while (op-
tionally) showing all the steps taken to arrive at the solu-
tion. This evaluation can be performed either electronically
(online) or on paper. In our experience, students have gen-
erally not performed well on these questions. Red black
tree algorithms have always been problematic for students
to learn. Past approaches to teaching red black trees (or
other balanced trees such as the AVL tree) and the associ-
ated algorithms have assumed that the students had diffi-
culty applying these rules and have focused on the mechan-
ics of applying the rules, specifically the single and double
rotation rules. These approaches have included:

• textbook exercises to learn how to apply a rule (e.g.,
[9, 4]),

• visualizations to show how the rules are applied. This
approach has been used with many data structures in-
cluding balanced trees [6, 5], and

• animations to show the steps of the application of the
rules [8, 7].

Our experience is that even with the aid of these ap-
proaches, students still have difficulty with solving the stan-
dard problem, i.e., creating a red black tree from a series of
input values. Extensive classroom discussions with students
along with analyses of exam questions indicate that the stu-
dents successfully learn the mechanics of applying the rules
(color flip, single and double rotation, simple insertion) but
have difficulty in determining when each should be applied.
This has led us to identify the following problems:

1. identification of the current node when iteratively travers-
ing the tree and applying the rules (Figure 1),

2. selection of the rule to be applied at the current node,
and

3. application of the rule correctly, depicted by the left
to right transitions for each of the trees in Figure 1.

Based on this list, we developed a new approach for teach-
ing top-down insertion in red black trees. The earlier ap-
proaches focused on the specific mechanics of the color flip,
single and double rotation operations. Our approach focuses
on (1) the recognition of when each of these rules is valid,
i.e., the recognition of the localized context at each step, and
(2) the sequence of steps that must be executed to apply one
or more rules on the tree.

3.1 A New Approach: The Granularity Ap-
proach

In contrast to previous approaches, our approach which we
call the granularity approach (1) breaks down the algorithm
and the accompanying insertion exercises into a combination
of smaller exercises so that students need to follow explicit
steps to (1) identify the current node, (2) select the rule to
be applied, and (3) apply the identified rule at the current
node. This explicitly separates out the identification of the
current node and selection of the applicable rule from the
the application of the rule itself.

279

Figure 2: An Exercise Using The Granularity Ap-
proach: insertion of 57 into the tree in 2 steps.

3.1.1 An Example Exercise Using The Granularity
Approach

An exercise using the granularity approach is shown in
Figure 2. To simplify the discussion, we assume that the
values stored in the nodes of the tree are integers ranging
from 1-100. Students are provided with a red black tree and
are then asked to apply the top-down insertion algorithm to
add a single number (57). They are required to show all
the steps of their work to reach a solution, with each step
representing one single change to the tree from the previous
step. In the example in Figure 2, to insert number 57 in
the tree, students have to go through two steps to reach the
solution. First, they have to apply a simple insertion on the
Initial Tree, that results in the tree in Step 1. Secondly, they
have to correct the tree from Step 1 by applying the single
rotation rule, as shown in Step 2, thus arriving at the final
correct solution.

We developed granularity based exercises to provide prac-
tice for the use of the five rules of top-down insertion, namely
color flip, single rotation, double rotation, simple insertion
and color the root black. The exercises varied in the context
for the selection of each rule. For example, we created exer-
cises where students could apply the color flip rule with the
current node being (1) the root of the tree, (2) the left child
of the root, and finally (3) the right child of the root. Sim-
ilarly, we designed exercises for the other rules of top-down
insertion.

3.2 Teaching The Granularity Approach With
A Tutoring System

We implemented our approach both in the classroom (lec-
ture) and in laboratory exercises. This section describes how
the students use the laboratory exercises. The laboratory ex-
ercises were provided through an intelligent tutoring system
(RedBlackTree Tutor) that we developed using the Cogni-
tive Tutor Authoring Tools (CTAT) [2]. The RedBlackTree
Tutor is a web based tutor that students can use to work
through the exercises.

Figure 3 shows a sample problem from the RedBlackTree
Tutor. In the left part of the figure students are given an
initial tree and a single value (a number) to insert. The
right part shows an empty tree that allows for many possible
transformations (both correct and incorrect). The student
now has to provide the answer for the step, and the answer
requires that she identify the current node by inserting its

Figure 3: The RedBlackTree Tutor: Left to Right
- (1) the problem, (2) solving the problem (simple
insertion)

value in the textbox next to ”What is the current node X?”
question. In addition, the student is asked to select the rule
to be applied in that step by choosing one of the five rules
from the drop-down menu next to the ”What rule will you
apply in this step?” question. Lastly, the student is asked
to apply the rule by filling in the empty tree. The student
can input the appropriate value of the nodes by filling in the
textboxes inside each node, and they can specify the color
of the node by clicking the ’R’, ’B’ and ’N’ radio buttons
which stand respectively for ’Red’, ’Black’ and ’Null’.

The tutor provides feedback by color highlighting what-
ever the student enters in a textbox, or selects from a radio
button or a drop-down menu. A green color indicates that
the student answer is correct, while a purple color signals
that the answer is incorrect. In addition, if the student is
having difficulties in identifying the current node or rule at a
particular step, the student can ask for hints from the tutor.

The RedBlackTree Tutor imposes ordering restrictions on
the problem solving path of the student. The first restric-
tion requires the student to provide the correct answer for
the current step before moving to the next step. The second
restriction is imposed within a particular step, and requires
students to answer the two questions at the top, namely
identify the current node and select a rule, before going on
to applying the rule. The tutor will not allow the student
to work on the application of the rule before completing
the identification questions correctly. The order restrictions
make the students follow the granularity approach, while
separating (1) steps from each other, and (2) the identifica-
tion and selection parts of the problem from the application
part.

4. EXPERIMENT DESIGN
We evaluated the granularity approach on the students

in our data structures class during the fall semester of 2014.
Students are introduced to red black trees during week 8, af-
ter they have covered binary trees and binary search trees.

280

This is the first balanced tree data structure that they will
have seen. There were sixteen students in the class, mostly
computer science and computer engineering majors and all
the students participated in the study. We only analyzed the
results for 12 of the students because 4 students had worked
and practiced on additional problems on their own in the
period between steps 2 and 3 of the evaluation process de-
scribed below. Their results were discarded from the overall
evaluation because we could not disambiguate between the
effects of using the RedBlackTree Tutor and the work that
they did on their own.

The evaluation process followed the following steps:

1. one week of lecture to cover red black trees,

2. in the following week, a pre-test of 25 mins followed
by,

3. a 1 hr session with the RedBlackTree Tutor, and

4. two days later, a 25 min post-test.

4.1 Step 1: Lecture
At the beginning, the class had one week of lecture time

(2.5 hours) where red black trees were covered. Students
were expected to read the description of the algorithm out-
side the class time and any misunderstanding or confusion
was addressed and discussed in class. During this time the
applicability requirements for each rule were described and
discussed. In the second half of the week, the students were
divided into groups of 3-4 students and were asked to apply
the insertion algorithm to a list of 16 values and create the
corresponding red black tree showing the tree after every
iteration. Each group presented their answers to the class
and they compared their solutions. Differences between so-
lutions were discussed and resolved in class.

4.2 Step 2: Pre-Test
In the following week, the students took a 25 min pre-test.

Students were asked to show all the steps of their work, and
for each step, to identify the current node, select the applica-
ble rule and apply the rule. The pre-test had 4 granularity
based exercises that separately tested the students ability
to select and apply a double rotation, color flip, single rota-
tion and simple insertion rule respectively. There was a fifth
question that tested the students ability to solve problems
that required the selection and application of a combination
of rules. For this question the students were asked to create
a red black tree and sequentially insert the given numbers
in the tree.

4.3 Step 3: Working With The RedBlackTree
Tutor

We developed 20 granularity based exercises for use with
the RedBlackTree Tutor. The exercises were divided into
two problem sets that were identical in the rules that were
required for each exercise but differed in the numbers used in
the initial trees and the numbers to be inserted. In each set
there were 3 exercises where students could perform a sim-
ple insertion, 3 exercises where they could perform a color
flip, 2 for single rotation and 2 for double rotation. In the
first problem set, the types of exercises were presented in
the order listed above, while in the second problem set, the
exercises were mixed so that there was no particular order
to their appearance.

Figure 4: Class performance in pre-test and post-
test

4.4 Step 4: Post-Test
Two days later the students had a 25 minute post-test.

The exercises for the pre-test and post-test were the same,
except that they differed in the numbers used for the initial
red black trees and the numbers used for insertion.

5. EXPERIMENTAL RESULTS
The pre-tests and post-tests were graded and scored based

on the correctness of each part of each step. We broke down
each step in the exercises into 3 parts - identification of the
current node, selection of the applicable rule, application of
the rule - and graded the answers accordingly. As much as
possible, we graded the parts independently. For example if
a student started with an incorrect tree from a previous tree
but then correctly identified the current node, applicable
rule and applied the rule she would be given full credit for
all the parts. A part is considered missing when there is no
information, e.g., the student does not identify the current
node or rule or skips the application of a rule. A missing
part, or a missing step can mean (1) the student knows how
to fill in the part/step but they did not write it down, or (2)
the student does not know how to fill in the part and leaves
it blank.

The average score in the pre-test was 40.8 (out of 75) and
it improved to 61.1 in the post-test (Figure 4). All 12 stu-
dents improved their score in the post-test with 8 students
having an improvement of 30.0% or more. The maximum
percentage increase from the pre-test to the post-test was
169.2% while the standard deviation dropped from 12.2 in
the pre-test to 10.2 in the post-test. Overall the average class
score increased by 49.6% from the pre-test to the post-test.

The improvement in average scores between the pre-test
and post-test is explained by a an overall decrease in the
number of incorrect and missing parts, and an increase in
the number of correct parts. The number of incorrect parts
decreased from 11.67 in the pre-test to 3.92 in the post-test
(Figure 5) while the number of missing parts dropped from
22.5 to 10.0 and the number of correct steps increased from
40.83 to 61.08.

We analyzed the scores of the students in (1) identifying
the current node at a particular step, (2) selecting the rule,
and (3) applying the rule, between the pre-test and post-
test. Figure 6 shows that the scores for node identification
improved from 10.5 to 18.83 while the scores for rule selec-

281

Figure 5: Distribution of the answers for each part
in the pre-test and post-test

Figure 6: Scores for each part from pre test to post
test

tion improved from 14.17 to 21.92 and the scores for rule
application improved from 16.2 to 20.3. Thus the scores for
node identification increased by 79.33%, rule selection in-
creased by 54.7% and rule application improved by 25.73%.

The data from the pre-test and post-test allowed us to
determine the main issues students face when learning the
top-down insertion algorithm for red black trees. Figure 7
shows a breakdown of the scores in the pre-test in the areas
of identifying the current node, selecting a rule and applying
the identified rule correctly. The maximum score for each
part is 25. The pre-test shows that following the week of
lecture time, the students are best at rule application, fol-
lowed by rule selection. They are weakest at identifying the
current node where the answers have the highest number
of missing and incorrect parts. These results support our
hypothesis that students have the most difficulty in identi-
fying the current node when learning top-down insertion in
red black trees. The data also supports our hypothesis that
students have more difficulty in selecting the applicable rule
than in applying a selected rule.

Figure 8 shows a similar analysis of the post-test data
with 25 being the maximum possible score for each part.
The scores in all three parts (node identification, rule selec-
tion, rule application) showed substantial improvement from
the pre-test so that they show similar values and the answers
are mostly correct. The improvement in node identification
comes from a drop in the number of incorrect parts and
a corresponding increase in correct parts. The data shows
that the RedBlackTree tutor has helped students learn how

Figure 7: Pre-test scores for each part broken down
by correct, incorrect and missing categories

Figure 8: Post-test scores for each part broken down
by correct, incorrect and missing categories

to correctly (1) identify the current node, (2) select the ap-
plicable rule and (3) apply the selected rule.

5.1 Discussion
The pre-test data shows that the students had difficulty in

applying the top-down insertion algorithm even after a week
of lectures that included examples and group work on prac-
tice problems. We believe that this is one of those instances
where learning the process effectively requires a significant
amount of practice. The data shows that after a week of lec-
tures the students had learned the process of applying the
rules far more effectively than they learned the process of
selecting a rule. The students were able to correctly identify
the current node in approximately 40% of the cases while
they were able to correctly apply the rule in 65% of the
cases.

The data we have collected shows that we may have been
incorrectly approaching how we teach red black trees, and
perhaps all balanced trees. It will take more experimenta-
tion and analysis before we can determine the cause of the
problems, but in the meantime the granularity approach has
been shown to effective at solving the problems.

6. CONCLUSION AND FUTURE WORK
This paper has described a new approach for teaching stu-

dents about insertion in red black trees. We have described
its implementation in an intelligent tutoring system, Red-
BlackTree Tutor and evaluation in a data structures course
in the fall semester of 2014. The initial analysis of the data

282

collected in the pre-tests and post-tests of this first itera-
tion showed that students had significant learning gains of
49.6% in performance. The data showed an overall perfor-
mance improvement, individually and in the class overall.
We also noticed a significant decrease in the number of in-
correct and missing parts from the pre-test to the post-test
and a corresponding increase in the number of correct parts.

The data we collected provides insights as to the source
of the difficulties for students learning insertion in red black
trees. The data indicated that the main problems students
face are in correctly identifying the current node and select-
ing the applicable rule, rather than in applying a selected
rule. We intend to extend our approach to include deletion
in red black trees and also to carry out a similar evaluation
in the spring semester of 2015.

7. REFERENCES
[1] ACM/IEEE-CS Joint Task Force on Computing

Curricula. ACM/IEEE Computing Curricula 2001 Final
Report. http://www.acm.org/sigcse/cc2001, 2001.

[2] V. Aleven, B. M. Mclaren, J. Sewall, and K. R.
Koedinger. A new paradigm for intelligent tutoring
systems: Example-tracing tutors. International Journal
of Artificial Intelligence in Education, 19(2):105–154,
2009.

[3] D. Chinn, P. Prins, and J. Tenenberg. The role of the
data structures course in the computing curriculum. In
Proceedings in The Journal of Computing Sciences in
Colleges, volume v19 #2, 2003.

[4] W. J. Collins. Data Structures and the Java Collections
Framework. McGraw-Hill, 3rd edition, 2011.

[5] D. Galles. Data structure visualizations.
http://www.cs.usfca.edu/~galles/visualization.

[6] S. Ha. VisuAlgo. http:
//www.comp.nus.edu.sg/~stevenha/visualization.

[7] J. Kloss. Animated data structures.
http://www.cs.jhu.edu/~goodrich/dsa/trees.

[8] W. C. Pierson and S. H. Rodger. Web-based animation
of data structures using jawaa. ACM SIGCSE Bulletin,
1998.

[9] M. A. Weiss. Data Structures & Problem Solving Using
Java. Pearson Education Inc., 3rd edition, 2011.

283

